Skip to main content

Advertisement

Log in

Update on the molecular diagnosis and targeted therapy of thyroid cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Thyroid cancer (TC) is the most common endocrine malignancy with steadily increasing incidence over the past few decades. Although standard strategies for the management of TC offer optimal outcomes in TC patients with favorable histological types at early stage, challenges arising from diagnosis and therapy still exist during clinical practice. A number of genetic alterations have been described in thyroid cancer, which provides an unprecedented opportunity for the identification of novel diagnostic and prognostic molecular markers as well as novel therapeutic targets. Molecular-targeted therapies, which have been investigated recently with increasing success, may prove to be a breakthrough in patients with advanced, radioiodine-refractory thyroid cancers. This review summarizes the latest progression in molecular diagnosis and targeted therapy of TC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ito Y, Nikiforov YE, Schlumberger M, et al. Increasing incidence of thyroid cancer: controversies explored. Nat Rev Endocrinol. 2013;9:178–84.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Xing M, Haugen BR, Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. Lancet. 2013;381:1058–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. American Cancer Society. Cancer facts & figures 2012. Atlanta: American Cancer Society; 2012.

    Google Scholar 

  5. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid Off J Am Thyroid Assoc. 2009;19:1167–214.

    Article  Google Scholar 

  6. Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. J Endocrinol Investig. 2010;33:51–6.

    CAS  Google Scholar 

  7. Ohori NP, Schoedel KE. Variability in the atypia of undetermined significance/follicular lesion of undetermined significance diagnosis in the Bethesda System for Reporting Thyroid Cytopathology: sources and recommendations. Acta Cytol. 2011;55:492–8.

    Article  PubMed  Google Scholar 

  8. Baloch ZW, LiVolsi VA, Asa SL, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol. 2008;36:425–37.

    Article  PubMed  Google Scholar 

  9. Wang CC, Friedman L, Kennedy GC, et al. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid Off J Am Thyroid Assoc. 2011;21:243–51.

    Article  Google Scholar 

  10. Nikiforov YE, Yip L, Nikiforova MN. New strategies in diagnosing cancer in thyroid nodules: impact of molecular markers. Clinical Cancer Res Off J Am Assoc Cancer Res. 2013;19:2283–8.

    Article  CAS  Google Scholar 

  11. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.

    Article  CAS  PubMed  Google Scholar 

  12. Bhaijee F, Nikiforov YE. Molecular analysis of thyroid tumors. Endocr Pathol. 2011;22:126–33.

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Rostan G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199–207.

    Article  CAS  PubMed  Google Scholar 

  14. Hou P, Liu D, Shan Y, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res Offic J Am Assoc Cancer Res. 2007;13:1161–70.

    Article  CAS  Google Scholar 

  15. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6(4):292–306.

    Article  CAS  PubMed  Google Scholar 

  17. de Groot JW, Links TP, Plukker JT, et al. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocrine Rev. 2006;27:535–60.

    Article  Google Scholar 

  18. Moura MM, Cavaco BM, Pinto AE, et al. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metabol. 2011;96:E863–8.

    Article  CAS  Google Scholar 

  19. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    CAS  PubMed  Google Scholar 

  20. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    Article  CAS  PubMed  Google Scholar 

  21. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metabol. 2003;88:5399–404.

    Article  CAS  Google Scholar 

  22. Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metabol. 2005;90:6373–9.

    Article  CAS  Google Scholar 

  23. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, et al. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I− targeting to the membrane. Endocr Relat Cancer. 2006;13:257–69.

    Article  CAS  PubMed  Google Scholar 

  24. Barollo S, Pennelli G, Vianello F, et al. BRAF in primary and recurrent papillary thyroid cancers: the relationship with (131)I and 2-[(18)F]fluoro-2-deoxy-d-glucose uptake ability. Eur J Endocrinol Eur Fed Endocr Soc. 2010;163:659–63.

    Article  CAS  Google Scholar 

  25. Mian C, Barollo S, Pennelli G, et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol. 2008;68:108–16.

    Article  CAS  Google Scholar 

  26. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    Article  CAS  PubMed  Google Scholar 

  27. Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol. 2010;321:86–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA, J Am Med Assoc. 2013;309:1493–501.

    Article  CAS  Google Scholar 

  29. Noguchi S, Yamashita H, Uchino S, et al. Papillary microcarcinoma. World J Surg. 2008;32:747–53.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Elisei R, Viola D, Torregrossa L, et al. The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metabol. 2012;97:4390–8.

    Article  CAS  Google Scholar 

  31. Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246:466–70; discussion 70–1.

  32. Howell GM, Nikiforova MN, Carty SE, et al. BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann Surg Oncol. 2013;20:47–52.

    Article  PubMed  Google Scholar 

  33. Yip L, Nikiforova MN, Carty SE, et al. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery. 2009;146:1215–23.

    Article  PubMed  Google Scholar 

  34. O’Neill CJ, Bullock M, Chou A, et al. BRAF(V600E) mutation is associated with an increased risk of nodal recurrence requiring reoperative surgery in patients with papillary thyroid cancer. Surgery. 2010;148:1139–45; discussion 45–6.

  35. Nucera C, Porrello A, Antonello ZA, et al. B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci USA. 2010;107:10649–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Basolo F, Torregrossa L, Giannini R, et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J Clin Endocrinol Metabol. 2010;95:4197–205.

    Article  CAS  Google Scholar 

  37. Rodolico V, Cabibi D, Pizzolanti G, et al. BRAF V600E mutation and p27 kip1 expression in papillary carcinomas of the thyroid <or=1 cm and their paired lymph node metastases. Cancer. 2007;110:1218–26.

    Article  PubMed  Google Scholar 

  38. Lee X, Gao M, Ji Y, et al. Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. Ann Surg Oncol. 2009;16:240–5.

    Article  PubMed  Google Scholar 

  39. Lupi C, Giannini R, Ugolini C, et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metabol. 2007;92:4085–90.

    Article  CAS  Google Scholar 

  40. Frasca F, Nucera C, Pellegriti G, et al. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer. 2008;15:191–205.

    Article  CAS  PubMed  Google Scholar 

  41. Kwak JY, Kim EK, Chung WY, et al. Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology. 2009;253:854–60.

    Article  PubMed  Google Scholar 

  42. Lin KL, Wang OC, Zhang XH, et al. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann Surg Oncol. 2010;17:3294–300.

    Article  PubMed  Google Scholar 

  43. Howell GM, Carty SE, Armstrong MJ, et al. Both BRAF V600E mutation and older age (>/= 65 years) are associated with recurrent papillary thyroid cancer. Ann Surg Oncol. 2011;18:3566–71.

    Article  PubMed  Google Scholar 

  44. Niemeier LA, Kuffner Akatsu H, Song C, et al. A combined molecular-pathologic score improves risk stratification of thyroid papillary microcarcinoma. Cancer. 2012;118:2069–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wells SA Jr, Santoro M. Targeting the RET pathway in thyroid cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15:7119–23.

    Article  CAS  Google Scholar 

  46. Nikiforov YE, Erickson LA, Nikiforova MN, et al. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Surg Pathol. 2001;25:1478–84.

    Article  CAS  PubMed  Google Scholar 

  47. Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metabol. 2011;96:3390–7.

    Article  CAS  Google Scholar 

  48. Musholt TJ, Fottner C, Weber MM, et al. Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J Surg. 2010;34:2595–603.

    Article  PubMed  Google Scholar 

  49. Moses W, Weng J, Sansano I, et al. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J Surg. 2010;34:2589–94.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Gupta N, Dasyam AK, Carty SE, et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metabol. 2013;98:E914–22.

    Article  Google Scholar 

  51. Adeniran AJ, Zhu Z, Gandhi M, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216–22.

    Article  PubMed  Google Scholar 

  52. Rivera M, Ricarte-Filho J, Knauf J, et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol Off J US Can Acad Pathol Inc. 2010;23:1191–200.

    CAS  Google Scholar 

  53. Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metabol. 2009;94:2092–8.

    Article  CAS  Google Scholar 

  54. Cantara S, Capezzone M, Marchisotta S, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metabol. 2010;95:1365–9.

    Article  CAS  Google Scholar 

  55. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569–77.

    CAS  PubMed  Google Scholar 

  56. Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.

    Article  CAS  PubMed  Google Scholar 

  57. Ohori NP, Nikiforova MN, Schoedel KE, et al. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol. 2010;118:17–23.

    Article  CAS  PubMed  Google Scholar 

  58. Nikiforov YE. Molecular analysis of thyroid tumors. Mod Pathol Off J US Can Acad Pathol Inc. 2011;24(Suppl 2):S34–43.

    CAS  Google Scholar 

  59. de Matos LL, Del Giglio AB, Matsubayashi CO, et al. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012;7:97.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  CAS  PubMed  Google Scholar 

  61. Brose MS, Nutting C, Jarzab B, et al. Sorafenib in locally advanced or metastatic patients with radioactive iodine-refractory differentiated thyroid cancer: the phase III DECISION trial. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:4a.

    Google Scholar 

  62. Thomas L, Lai SY, Dong W, et al. Sorafenib in metastatic thyroid cancer: a systematic review. Oncol. 2014;19:251–8.

    Article  CAS  Google Scholar 

  63. Shen Y, Ruan M, Luo Q, et al. Brain metastasis from follicular thyroid carcinoma: treatment with sorafenib. Thyroid Off J Am Thyroid Assoc. 2012;22:856–60.

    Article  CAS  Google Scholar 

  64. Chen L, Shen Y, Luo Q, et al. Response to sorafenib at a low dose in patients with radioiodine-refractory pulmonary metastases from papillary thyroid carcinoma. Thyroid Off J Am Thyroid Assoc. 2011;21:119–24.

    Article  Google Scholar 

  65. Bible KC, Suman VJ, Molina JR, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 2010;11:962–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Bible KC, Suman VJ, Menefee ME, et al. A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. J Clin Endocrinol Metabol. 2012;97:3179–84.

    Article  CAS  Google Scholar 

  67. Isham CR, Bossou AR, Negron V, et al. Pazopanib enhances paclitaxel-induced mitotic catastrophe in anaplastic thyroid cancer. Sci Transl Med. 2013;5:166ra3.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Almeida MQ, Hoff AO. Recent advances in the molecular pathogenesis and targeted therapies of medullary thyroid carcinoma. Curr Opin Oncol. 2012;24:229–34.

    Article  CAS  PubMed  Google Scholar 

  69. Wells SA Jr, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:134–41.

    Article  CAS  Google Scholar 

  70. Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS ONE. 2012;7:e30353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10:2298–308.

    Article  CAS  PubMed  Google Scholar 

  72. Sherman SI. Targeted therapies for thyroid tumors. Mod Pathol Off J US Can Acad Pathol Inc. 2011;24(Suppl 2):S44–52.

    CAS  Google Scholar 

  73. Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:2660–6.

    Article  CAS  Google Scholar 

  74. Elisei R, Schlumberger MJ, Muller SP, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:3639–46.

    Article  CAS  Google Scholar 

  75. American Cancer Society. Phase 3 Trial Shows Lenvatinib Meets Primary Endpoint of Progression Free Survival in Radioiodine-Refractory Differentiated Thyroid Cancer. 2014. http://www.thyroid.org/wp-content/uploads/news/2014/Lenvatinib-P3-FINALUS.pdf.

  76. Carr LL, Mankoff DA, Goulart BH, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16:5260–8.

    Article  CAS  Google Scholar 

  77. Sherman SI, Wirth LJ, Droz JP, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359:31–42.

    Article  CAS  PubMed  Google Scholar 

  78. Cohen EE, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:4708–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially sponsored by the National Natural Science Foundation of China (81271609) and Shanghai Rising-Star Program (12QH1401600).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Ruan, M. & Chen, L. Update on the molecular diagnosis and targeted therapy of thyroid cancer. Med Oncol 31, 973 (2014). https://doi.org/10.1007/s12032-014-0973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0973-9

Keywords

Navigation