Skip to main content

Advertisement

Log in

LRRC4 haplotypes are associated with pituitary adenoma in a Chinese population

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Pituitary adenoma results from accumulation of multiple genetic and/or epigenetic aberrations such as GNAS, MEN1, CNC, and FIPA. LRRC4 is relatively tissue-specific expressed gene in the normal brain and downregulated expression in glioma (87.5 %), meningioma (80.9 %), and pituitary adenoma (85.5 %). It has been suggested that the aberrant expression of LRRC4 contributes to tumorigenesis in glioma. However, little is known yet about association between LRRC4 and risk of pituitary adenoma. In this study, we genotyped three LRRC4 haplotype-tagging SNPs (htSNP) by direct sequencing in case–control studies, which included 183 Han Chinese patients diagnosed with pituitary adenoma and 183 age-, gender-matched, and geographically matched Han Chinese controls. Haplotypes were reconstructed according to the genotyping data and linkage disequilibrium status of the htSNP. We observed statistically significant differences regarding the genotype TT + CT of rs6944446 in the NCA. Haplotype AC of rs3823994–rs6944446 is suggested to have a protective effect in the development of pituitary adenoma (OR 0.339; 95 % CI 0.123–0.934). However, haplotype GT of rs3808058–rs6944446 (OR 1.575; 95 % CI 1.048–2.368) and AGT of rs3823994–rs6944446–rs3808058 (OR 1.673; 95 % CI 1.056–2.651) might be a risk factor for pituitary adenoma development. In a brief, the results support the hypothesis that polymorphisms or haplotypes in the LRRC4 may have important research significance and could be used to predict the risk of pituitary adenoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu M, Huang H, Chen Q, Li D, Zheng Z, Xiong W, Zhou Y, Li X, Zhou M, Lu J, et al. Leucine-rich repeat C4 protein is involved in nervous tissue development and neurite outgrowth, and induction of glioma cell differentiation. Acta Biochim Biophys Sin (Shanghai). 2007;39(10):731–8.

    Article  CAS  Google Scholar 

  2. Wang JR, Qian J, Dong L, Li XL, Tan C, Li J, Zhang BC, Zhou J, Li GY. Identification of LRRC4, a novel member of leucine-rich repeat (LRR) superfamily, and its expression analysis in brain tumor. Prog Biochem Biophys. 2002;29:233–9.

    CAS  Google Scholar 

  3. Zhang Q, Wang J, Fan S, Wang L, Cao L, Tang K, Peng C, Li Z, Li W, Gan K, et al. Expression and functional characterization of LRRC4, a novel brain-specific member of the LRR superfamily. FEBS Lett. 2005;579(17):3674–82.

    Article  PubMed  CAS  Google Scholar 

  4. Wu M, Huang C, Gan K, Huang H, Chen Q, Ouyang J, Tang Y, Li X, Yang Y, Zhou H, et al. LRRC4, a putative tumor suppressor gene, requires a functional leucine-rich repeat cassette domain to inhibit proliferation of glioma cells in vitro by modulating the extracellular signal-regulated kinase/protein kinase B/nuclear factor-kappa B pathway. Mol Biol Cell. 2006;17(8):3534–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Zhang Z, Li D, Wu M, Xiang B, Wang L, Zhou M, Chen P, Li X, Shen S, Li G. Promoter hypermethylation-mediated inactivation of LRRC4 in gliomas. BMC Mol Biol. 2008;9:99.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wu M, Huang C, Li X, Gan K, Chen Q, Tang Y, Tang K, Shen S, Li G. LRRC4 inhibits glioblastoma cell proliferation, migration, and angiogenesis by downregulating pleiotropic cytokine expression and responses. J Cell Physiol. 2008;214(1):65–74.

    Article  PubMed  CAS  Google Scholar 

  7. Wu M, Chen Q, Li D, Li X, Huang C, Tang Y, Zhou Y, Wang D, Tang K, Cao L, et al. LRRC4 inhibits human glioblastoma cells proliferation, invasion, and proMMP-2 activation by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling pathways. J Cell Biochem. 2008;103(1):245–55.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H, Xiao L, Liu X, Wang R, Li X, et al. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer. 2011;10:124.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, Liao Q, Guo X, Wang R, Li X, et al. Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res. 2011;1390:21–32.

    Article  PubMed  CAS  Google Scholar 

  10. Tang H, Wang Z, Chen C, Xie F, Wu M, Li G. Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. Plos One 2013, accepted.

  11. Cox L, Nelson H, Lockey R, Calabria C, Chacko T, Finegold I, Nelson M, Weber R, Bernstein DI, Blessing-Moore J, et al. Allergen immunotherapy: a practice parameter third update. J Allergy Clin Immunol. 2011;127(1 Suppl):S1–55.

    Article  PubMed  Google Scholar 

  12. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR, et al. Two G protein oncogenes in human endocrine tumors. Science. 1990;249(4969):655–9.

    Article  PubMed  CAS  Google Scholar 

  13. Freda PU, Chung WK, Matsuoka N, Walsh JE, Kanibir MN, Kleinman G, Wang Y, Bruce JN, Post KD. Analysis of GNAS mutations in 60 growth hormone secreting pituitary tumors: correlation with clinical and pathological characteristics and surgical outcome based on highly sensitive GH and IGF-I criteria for remission. Pituitary. 2007;10(3):275–82.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou Y, Zhang X, Klibanski A. Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma. Mol Cell Endocrinol 2013.

  15. Tateno T, Zhu X, Asa SL, Ezzat S. Chromatin remodeling and histone modifications in pituitary tumors. Mol Cell Endocrinol. 2010;326(1–2):66–70.

    Article  PubMed  CAS  Google Scholar 

  16. Asa SL, Ezzat S. The pathogenesis of pituitary tumors. Annu Rev Pathol. 2009;4:97–126.

    Article  PubMed  CAS  Google Scholar 

  17. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet. 2005;37(11):1217–23.

    Article  PubMed  Google Scholar 

  18. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.

    Article  PubMed  CAS  Google Scholar 

  19. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004;74(1):106–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8.

    Article  PubMed  CAS  Google Scholar 

  21. Akey J, Jin L, Xiong M. Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet. 2001;9(4):291–300.

    Article  PubMed  CAS  Google Scholar 

  22. Zhou Y, Liu B, Wang M, Ni J. Endothelin-1 gene polymorphisms and risk of chemoresistant pediatric osteosarcoma. Pediatr Blood Cancer 2013.

  23. Chen H, Wang W, Xingjie Z, Song X, Fan W, Keke Z, Chen G, Zhao Y, Mao Y, Lu D. Association between genetic variations of vascular endothelial growth factor receptor 2 and glioma in the Chinese Han population. J Mol Neurosci. 2012;47(3):448–57.

    Article  PubMed  CAS  Google Scholar 

  24. Xiao L, Wu MH, Li GY. miRNA associated SNP. Chem Life. 2013;33(1):14–7.

    CAS  Google Scholar 

  25. Taylor WD, Benjamin S, McQuoid DR, Payne ME, Krishnan RR, MacFall JR, Ashley-Koch A. AGTR1 gene variation: association with depression and frontotemporal morphology. Psychiatry Res. 2012;202(2):104–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Stayoussef M, Benmansour J, Al-Jenaidi FA, Rajab MH, Said HB, Ourtani M, Rayana CB, Mahjoub T, Almawi WY. Identification of specific tumor necrosis factor-alpha-susceptible and -protective haplotypes associated with the risk of type 1 diabetes. Eur Cytokine Netw. 2010;21(4):285–91.

    PubMed  CAS  Google Scholar 

  27. Rodrigues P, Furriol J, Tormo E, Ballester S, Lluch A, Eroles P. The single-nucleotide polymorphisms +936 C/T VEGF and −710 C/T VEGFR1 are associated with breast cancer protection in a Spanish population. Breast Cancer Res Treat. 2012;133(2):769–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Science Foundation of China (81101541), the Hunan Province Natural Sciences Foundations of China (11JJ1013), and Specialized Research Fund for the Doctoral Program of Higher Education (20110162120038). We gratefully acknowledge the participation and cooperation of pituitary adenoma patients and individuals without a history of cancer.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Tu, C., Chen, S. et al. LRRC4 haplotypes are associated with pituitary adenoma in a Chinese population. Med Oncol 31, 888 (2014). https://doi.org/10.1007/s12032-014-0888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0888-5

Keywords

Navigation