Skip to main content


Log in

Down-regulation of miR-24-3p in colorectal cancer is associated with malignant behavior

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript


Deregulation of microRNAs is a frequent event in the tumorigenesis and tumor progression. The aim of this study was to investigate the clinical significance and potential role of miR-24-3p expression in colorectal cancer (CRC). The expression level of miR-24-3p was determined in 95 CRC patients who underwent radical resection by quantitative real-time PCR. The associations between miR-24-3p expression and clinicopathological parameters were analyzed. In vitro function assays including cell proliferation, cell migration and invasion were further explored. We found that miR-24-3p was reduced in CRC tissues compared with their corresponding non-cancerous tissues (P < 0.001) and significantly correlated with local invasion (P = 0.002), lymph node metastasis (P = 0.0007) and clinical stage (P < 0.001). Moreover, Kaplan–Meier survival analysis showed that patients with low miR-24-3p level had a significantly poorer prognosis than those with high miR-24-3p level (P < 0.001). Multivariate analysis revealed that miR-24-3p (HR 2.767; 95 % CI 1.203–6.364; P = 0.017) and clinical TNM stage (HR 0.456; 95 % CI 0.212–0.978; P = 0.044) could be independent prognostic indicators for overall survival rates of CRC patients. In addition, functional assays showed that over-expression of miR-24-3p suppressed CRC cell proliferation, cell migration and invasion. miR-24-3p functions as a tumor suppressor in CRC. Down-regulation of miR-24-3p contributes to the development and progression of CRC and may have a potential role in prognosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–7. doi:10.1055/s-0029-1242458.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Duffy MJ, Lamerz R, Haglund C, Nicolini A, Kalousová M, Holubec L, et al. Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: european group on tumor markers 2014 guidelines update. Int J Cancer. 2014;134(11):2513–22. doi:10.1002/ijc.28384.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kim DH, Pickhardt PJ, Taylor AJ, Leung WK, Winter TC, Hinshaw JL, et al. CT colonography versus colonoscopy for the detection of advanced neoplasia. N Engl J Med. 2007;357(14):1403–12.

    Article  CAS  PubMed  Google Scholar 

  5. Collins JF, Lieberman DA, Durbin TE, Weiss DG, Veterans Affairs Cooperative Study #380 Group. Accuracy of screening for fecal occult blood on a single stool sample obtained by digital rectal examination: a comparison with recommended sampling practice. Ann Intern Med. 2005;142(2):81–5.

    Article  PubMed  Google Scholar 

  6. Davis BN, Hata A. MicroRNA in Cancer: the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer. 2010;1(11):1100–14. doi:10.1177/1947601910396213.

    Article  Google Scholar 

  7. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610. doi:10.1038/nrg2843.

    CAS  PubMed  Google Scholar 

  8. Xu W, Liu M, Peng X, Zhou P, Zhou J, Xu K, et al. miR-24-3p and miR-27a-3p promote cell proliferation in glioma cells via cooperative regulation of MXI1. Int J Oncol. 2013;42(2):757–66. doi:10.3892/ijo.2012.1742.

    PubMed  Google Scholar 

  9. Xie Y, Tobin LA, Camps J, Wangsa D, Yang J, Rao M, et al. MicroRNA-24 regulates XIAP to reduce the apoptosis threshold in cancer cells. Oncogene. 2013;32(19):2442–51. doi:10.1038/onc.2012.258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol Cancer. 2010;9:232. doi:10.1186/1476-4598-9-232.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Martin EC, Elliott S, Rhodes LV, Antoon JW, Fewell C, Zhu Y, et al. Preferential star strand biogenesis of pre-miR-24-2 targets PKC-alpha and suppresses cell survival in MCF-7 breast cancer cells. Mol Carcinog. 2014;53(1):38–48. doi:10.1002/mc.21946.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yang P, Tang R, Zhu J, Zou L, Wu R, Zhou H, et al. A functional variant at miR-24 binding site in B7-H2 alters susceptibility to gastric cancer in a Chinese Han population. Mol Immunol. 2013;56(1–2):98–103. doi:10.1016/j.molimm.2013.04.010.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang HH, Zhang ZY, Che CL, Mei YF, Shi YZ. Array analysis for potential biomarker of gemcitabine identification in non-small cell lung cancer cell lines. Int J Clin Exp Pathol. 2013;6(9):1734–46.

    PubMed Central  PubMed  Google Scholar 

  14. Li X, Liu X, Xu W, Zhou P, Gao P, Jiang S, et al. c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem. 2013;288(25):18121–33. doi:10.1074/jbc.M113.478560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, et al. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer. 2008;123(4):972–8. doi:10.1002/ijc.23580.

    Article  CAS  PubMed  Google Scholar 

  16. Zaidi SK, Dowdy CR, van Wijnen AJ, Lian JB, Raza A, Stein JL, et al. Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res. 2009;69(21):8249–55. doi:10.1158/0008-5472.CAN-09-1567.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS ONE. 2010;5(2):e9429. doi:10.1371/journal.pone.0009429.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nguyen T, Rich A, Dahl R. MiR-24 promotes the survival of hematopoietic cells. PLoS ONE. 2013;8(1):e55406. doi:10.1371/journal.pone.0055406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Salvi A, Abeni E, Portolani N, Barlati S, De Petro G. Human hepatocellular carcinoma cell-specific miRNAs reveal the differential expression of miR-24 and miR-27a in cirrhotic/non-cirrhotic HCC. Int J Oncol. 2013;42(2):391–402. doi:10.3892/ijo.2012.1716.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Mishra PJ, Song B, Mishra PJ, Wang Y, Humeniuk R, Banerjee D, et al. MiR-24 tumor suppressor activity is regulated independent of p53 and through a target site polymorphism. PLoS ONE. 2009;4(12):e8445. doi:10.1371/journal.pone.0008445.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Nelson KM, Weiss GJ. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther. 2008;7(12):3655–60. doi:10.1158/1535-7163.MCT-08-0586.

    Article  CAS  PubMed  Google Scholar 

  22. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Mol Cell. 2009;35(5):610–25. doi:10.1016/j.molcel.2009.08.020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Giglio S, Cirombella R, Amodeo R, Portaro L, Lavra L, Vecchione A. MicroRNA miR-24 promotes cell proliferation by targeting the CDKs inhibitors p27Kip1 and p16INK4a. J Cell Physiol. 2013;228(10):2015–23. doi:10.1002/jcp.24368.

    Article  CAS  PubMed  Google Scholar 

  24. Song L, Yang J, Duan P, Xu J, Luo X, Luo F, et al. MicroRNA-24 inhibits osteosarcoma cell proliferation both in vitro and in vivo by targeting LPAATβ. Arch Biochem Biophys. 2013;535(2):128–35. doi:10.1016/

    Article  CAS  PubMed  Google Scholar 

  25. Du WW, Fang L, Li M, Yang X, Liang Y, Peng C, et al. MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. J Cell Sci. 2013;126(Pt 6):1440–53. doi:10.1242/jcs.118299.

    Article  CAS  PubMed  Google Scholar 

  26. Guo Y, Fu W, Chen H, Shang C, Zhong M. miR-24 functions as a tumor suppressor in Hep2 laryngeal carcinoma cells partly through down-regulation of the S100A8 protein. Oncol Rep. 2012;27(4):1097–103. doi:10.3892/or.2011.1571.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references


This study was supported by National Natural Science Foundation of China (81271916, 81301506), Natural Science Foundation of Shandong (Grant No. ZR2013HM104), the Fundamental Research Funds of Shandong University and the National Key Clinical Medical Specialties Foundation.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chuanxin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, Y., Du, L. et al. Down-regulation of miR-24-3p in colorectal cancer is associated with malignant behavior. Med Oncol 32, 362 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: