Skip to main content
Log in

MicroRNA-106b~25 expressions in tumor tissues and plasma of patients with gastric cancers

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

MiR-106b~25 has been researched in several cancers. The aim of this study was to test miR-106b~25 expressions in 40 operative specimens and 20 pre-operative plasma samples of GC patients and explore the correlations between these miRNAs and some related clinical pathological factors. Compared with corresponding adjacent non-tumorous tissues, the expression of miR-106b~25 cluster increased significantly in gastric cancer tissues from 40 samples, with a median relative expression of 2.41(miR-106b), 2.83(miR-93) and 2.71(miR-25). The expression of miRNA-106b~25 cluster in tumor tissues was significantly correlated with tumor size, borrmann type, depth of tumor invasion (T), lymph node metastases (N), distant metastasis (M) and TNM stage (P < 0.05). The expressive level of miRNA-106b~25 cluster was also statistically significant higher than healthy volunteers in plasma, with a median of 2.51(miR-106b), 2.32(miR-93) and 2.10(miR-25). The expression of miR-106b~25 cluster in plasma was significantly correlated with tumor size, borrmann type and TNM stage (P < 0.05) in GC patients. What’s more, the three components of miR-106b~25 cluster expressed consistently at a high level both in specimens and plasma. Considering the relationship between three miRNAs and some clinical pathological factors (TNM stage), it was implied that miR-106b~25 could be the next potential tumor biomarker for diagnosis and predictive prognosis for gastric cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Lin Y, Ueda J, Kikuchi S, Totsuka Y, Wei WQ, Qiao YL, et al. Comparative epidemiology of gastric cancer between Japan and China. World J Gastroenterol. 2011;17(39):4421–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu YF, Liu ZC, Li ZH, Ma WH, Wang FR, Zhang YB, et al. Esophageal/gastric cancer screening in high-risk populations in Henan Province China. Asian Pac J Cancer Prev. 2014;15(3):1419–22.

    Article  PubMed  Google Scholar 

  4. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102(7):1174–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Tong F, Cao P, Yin Y, Xia S, Lai R, Liu S. MicroRNAs in gastric cancer: from benchtop to bedside. Dig Dis Sci. 2014;59(1):24–30.

    Article  PubMed  CAS  Google Scholar 

  6. Li B, Shi XB, Nori D, Chao CK, Chen AM, Valicenti R, et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate. 2011;71(6):567–74.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang A, Hao J, Wang K, Huang Q, Yu K, Kang C, et al. Down-regulation of miR-106b suppresses the growth of human glioma cells. J Neurooncol. 2013;112(2):179–89.

    Article  PubMed  CAS  Google Scholar 

  8. Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, et al. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res. 2010;29(90):90.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, et al. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010;3(117):ra29.

    PubMed  PubMed Central  Google Scholar 

  10. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  11. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Wang J, Wang Q, Liu H, Hu B, Zhou W, Cheng Y. MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett. 2010;297(2):137–43.

    Article  PubMed  CAS  Google Scholar 

  13. Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353(17):1768–71.

    Article  PubMed  CAS  Google Scholar 

  14. Greenberg E, Hajdu S, Nemlich Y, Cohen R, Itzhaki O, Jacob-Hirsch J, et al. Differential regulation of aggressive features in melanoma cells by members of the miR-17-92 complex clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. Upregulation of microRNA-17-92 cluster associates with tumor progression and prognosis in osteosarcoma. Open Biol. 2014;4(6):140030.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tan W, Li Y, Lim SG, Tan TM, Li X, Yang H, et al. Clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. Upregulation of microRNA-17-92 cluster associates with tumor progression and prognosis in osteosarcoma. World J Gastroenterol. 2014;20(20):5962–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Li X, Yang H, Tian Q, Liu Y, Weng Y. Upregulation of microRNA-17-92 cluster associates with tumor progression and prognosis in osteosarcoma. Neoplasma. 2014;61(4):453–60.

  17. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24(4):652–7.

    Article  PubMed  CAS  Google Scholar 

  18. Ulivi P, Zoli W, Huang J, Zhang SY, Gao YM, Liu YF, et al. MiRNAs as non-invasive biomarkers for lung cancer diagnosis microRNAs as oncogenes or tumour suppressors in oesophageal cancer: potential biomarkers and therapeutic targets. Molecules. 2014;19(6):8220–37.

    Article  PubMed  CAS  Google Scholar 

  19. Huang J, Zhang SY, Gao YM, Liu YF, Liu YB, Zhao ZG, et al. MicroRNAs as oncogenes or tumour suppressors in oesophageal cancer: potential biomarkers and therapeutic targets. Cell Prolif. 2014;6(10):12109.

    Google Scholar 

  20. Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37(5):1672–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res. 2008;68(20):8191–4.

    Article  PubMed  CAS  Google Scholar 

  22. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13(3):272–86.

    Article  PubMed  CAS  Google Scholar 

  23. Cai K, Wang Y, Bao X. MiR-106b promotes cell proliferation via targeting RB in laryngeal carcinoma. J Exp Clin Cancer Res. 2011;30(73):73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 2009;112(1):55–9.

    Article  PubMed  CAS  Google Scholar 

  26. Schou JV, Rossi S, Jensen BV, Nielsen DL, Pfeiffer P, Hogdall E, et al. MiR-345 in metastatic colorectal cancer: a non-invasive biomarker for clinical outcome in non-kras mutant patients treated with 3rd line cetuximab and irinotecan genetic polymorphism of miR-196a as a prognostic biomarker for early breast cancer. PLoS One. 2014;9(6):e99886.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee SJ, Seo JW, Chae YS, Kim JG, Kang BW, Kim WW, et al. Genetic Polymorphism of miR-196a as a prognostic biomarker for early breast cancer. Anticancer Res. 2014;34(6):2943–9.

    PubMed  CAS  Google Scholar 

  28. Li X, Shi Y, Yin Z, Xue X, Zhou B. An eight-miRNA signature as a potential biomarker for predicting survival in lung adenocarcinoma. J Transl Med. 2014;12(1):159.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tianjin Natural Science Funds (No. 13JCYBJC24200).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntian Liu.

Additional information

Rupeng Zhang and Weijia Wang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, W., Li, F. et al. MicroRNA-106b~25 expressions in tumor tissues and plasma of patients with gastric cancers. Med Oncol 31, 243 (2014). https://doi.org/10.1007/s12032-014-0243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0243-x

Keywords

Navigation