Medical Oncology

, 31:69 | Cite as

Cancer stem cell detection and isolation

  • Meysam Moghbeli
  • Faezeh Moghbeli
  • Mohammad Mahdi Forghanifard
  • Mohammad Reza Abbaszadegan
Review Article

Abstract

Only 10 % of cancer-related deaths result from primary tumors; most are caused by metastatic tumors. It is believed that the metastatic power of tumor cells is attributed to features of a stem cell-like subpopulation of tumor cells known as cancer stem cells (CSCs). Cancer stem cells are resistant to chemotherapeutic treatments and can induce dormancy in tumor cells for long periods. Detection, isolation, and characterization of CSCs in solid tumors are hallmarks of cancer-targeted therapies in recent years. There are inevitable similarities between normal and cancer stem cells; therefore, finding specific methods or markers to differentiate them is critical to cancer therapies. Considering CSCs involvement in tumor relapse and chemotherapeutic resistance, identification of such cells in tumors is imperative for effective targeted therapy. The present review introduces practical and specific protocols used to isolate CSCs from solid tumors from colon, esophagus, liver, breast, brain, and cervix.

Keywords

Cancer stem cell Isolation Detection Targeted therapy Surface marker Tumor relapse 

References

  1. 1.
    Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell. 2005;7(1):17–23.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Moghbeli M, Moghbeli F, Forghanifard MM, Garayali A, Abbaszadegan MR. Cancer stem cell markers in esophageal cancer. Am J Cancer Sci. 2013;2(1):37–50.Google Scholar
  3. 3.
    Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66(4):1883–90 discussion 95-6.PubMedCrossRefGoogle Scholar
  4. 4.
    Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124(6):1111–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med. 2007;58:267–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci USA. 2003;100(7):3547–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 2005;65(14):6207–19.PubMedCrossRefGoogle Scholar
  10. 10.
    Bapat SA. Human ovarian cancer stem cells. Reproduction. 2010;140(1):33–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Biddle A, Gammon L, Fazil B, Mackenzie IC. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition. PLoS One. 2013;8(2):e57314.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hill RP. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 2006;66(4):1891–5 discussion 0.PubMedCrossRefGoogle Scholar
  13. 13.
    Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27(5):1006–20.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tirino V, Camerlingo R, Franco R, Malanga D, La Rocca A, Viglietto G, et al. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur J Cardiothorac Surg. 2009;36(3):446–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu C, Alman BA. Side population cells in human cancers. Cancer Lett. 2008;268(1):1–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Almanaa TN, Geusz ME, Jamasbi RJ. A new method for identifying stem-like cells in esophageal cancer cell lines. J Cancer. 2013;4(7):536–48.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Song J, Chang I, Chen Z, Kang M, Wang CY. Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One. 2010;5(7):e11456.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Gilbert CA, Ross AH. Cancer stem cells: cell culture, markers, and targets for new therapies. J Cell Biochem. 2009;108(5):1031–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Li L, Li B, Shao J, Wang X. Chemotherapy sorting can be used to identify cancer stem cell populations. Mol Biol Rep. 2012;39(11):9955–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46(4):765–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Mosavi-Jarrahi A, Ahmadi-Jouibari T, Najafi F, Mehrabi Y, Aghaei A. Estimation of esophageal cancer incidence in Tehran by log-linear method using population-based cancer registry data. Asian Pac J Cancer Prev. 2013;14(9):5367–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Roshandel G, Semnani S, Malekzadeh R, Dawsey SM. Polycyclic aromatic hydrocarbons and esophageal squamous cell carcinoma. Arch Iran Med. 2012;15(11):713–22.PubMedGoogle Scholar
  23. 23.
    Zhao JS, Li WJ, Ge D, Zhang PJ, Li JJ, Lu CL, et al. Tumor initiating cells in esophageal squamous cell carcinomas express high levels of CD44. PLoS One. 2011;6(6):e21419.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Misra S, Hascall VC, Berger FG, Markwald RR, Ghatak S. Hyaluronan, CD44, and cyclooxygenase-2 in colon cancer. Connect Tissue Res. 2008;49(3):219–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Misra S, Toole BP, Ghatak S. Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem. 2006;281(46):34936–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Gotoda T, Matsumura Y, Kondo H, Ono H, Kanamoto A, Kato H, et al. Expression of CD44 variants and prognosis in oesophageal squamous cell carcinoma. Gut. 2000;46(1):14–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kalish ED, Iida N, Moffat FL, Bourguignon LY. A new CD44V3-containing isoform is involved in tumor cell growth and migration during human breast carcinoma progression. Front Biosci. 1999;4:A1–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Kuhn S, Koch M, Nubel T, Ladwein M, Antolovic D, Klingbeil P, et al. A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res. 2007;5(6):553–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuniyasu H, Oue N, Tsutsumi M, Tahara E, Yasui W. Heparan sulfate enhances invasion by human colon carcinoma cell lines through expression of CD44 variant exon 3. Clin Cancer Res. 2001;7(12):4067–72.PubMedGoogle Scholar
  30. 30.
    Liu WK, Fu Q, Li YM, Jiang XY, Zhang MP, Zhang ZX. The relationship between cyclooxygenase-2, CD44v6, and nm23H1 in esophageal squamous cell carcinoma. Onkologie. 2009;32(10):574–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Sano A, Kato H, Sakurai S, Sakai M, Tanaka N, Inose T, et al. CD24 expression is a novel prognostic factor in esophageal squamous cell carcinoma. Ann Surg Oncol. 2009;16(2):506–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Lo HW, Zhu H, Cao X, Aldrich A, Ali-Osman F. A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res. 2009;69(17):6790–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Schabath H, Runz S, Joumaa S, Altevogt P. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci. 2006;119(Pt 2):314–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13(8B):2236–52.PubMedCrossRefGoogle Scholar
  35. 35.
    Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ, et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA. 2006;103(31):11707–12.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107(5):2162–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck. 2010;32(9):1195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Forghanifard MM, Moaven O, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, et al. Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol. 2012;19(3):743–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Moghbeli M, Abbaszadegan MR, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, et al. Association of PYGO2 and EGFR in esophageal squamous cell carcinoma. Med Oncol. 2013;30(2):516.PubMedCrossRefGoogle Scholar
  40. 40.
    Moghbeli M, Forghanifard MM, Aarabi A, Mansourian A, Abbaszadegan MR. Clinicopathological sex- related relevance of Musashi1 mRNA Expression in Esophageal Squamous Cell Carcinoma Patients. Pathol Oncol Res. 2014;20:427–33.Google Scholar
  41. 41.
    Kimura O, Takahashi T, Ishii N, Inoue Y, Ueno Y, Kogure T, et al. Characterization of the epithelial cell adhesion molecule (EpCAM)+ cell population in hepatocellular carcinoma cell lines. Cancer Sci. 2010;101(10):2145–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Tomuleasa C, Soritau O, Rus-Ciuca D, Pop T, Todea D, Mosteanu O, et al. Isolation and characterization of hepatic cancer cells with stem-like properties from hepatocellular carcinoma. J Gastrointestin Liver Dis. 2010;19(1):61–7.PubMedGoogle Scholar
  43. 43.
    Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, et al. Cancer stem/progenitor cells are highly enriched in CD133+ CD44+ population in hepatocellular carcinoma. Int J Cancer. 2010;126(9):2067–78.PubMedGoogle Scholar
  44. 44.
    Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 2006;44(1):240–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Udomsakdi C, Eaves CJ, Sutherland HJ, Lansdorp PM. Separation of functionally distinct subpopulations of primitive human hematopoietic cells using rhodamine-123. Exp Hematol. 1991;19(5):338–42.PubMedGoogle Scholar
  46. 46.
    Bertoncello I, Williams B. Hematopoietic stem cell characterization by Hoechst 33342 and rhodamine 123 staining. Methods Mol Biol. 2004;263:181–200.PubMedGoogle Scholar
  47. 47.
    Marx J. Cancer research. Mutant stem cells may seed cancer. Science. 2003;301(5638):1308–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.PubMedCrossRefGoogle Scholar
  49. 49.
    Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175(1):1–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell. 2011;8(5):486–98.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Liu J, Ma L, Xu J, Liu C, Zhang J, Liu J, et al. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties. Int J Oncol. 2013;42(2):453–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Cao L, Zhou Y, Zhai B, Liao J, Xu W, Zhang R, et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 2011;11:71.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yamamoto N, Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N, et al. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J Biol Chem. 2001;276(48):45031–40.PubMedCrossRefGoogle Scholar
  54. 54.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRefGoogle Scholar
  56. 56.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, et al. Highly tumorigenic lung cancer CD133 + cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA. 2009;106(38):16281–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010;28(1):5–16.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res. 2008;6(7):1146–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Ricardo S, Vieira AF, Gerhard R, Leitao D, Pinto R, Cameselle-Teijeiro JF, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol. 2011;64(11):937–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Tolg C, Hofmann M, Herrlich P, Ponta H. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res. 1993;21(5):1225–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Auvinen P, Tammi R, Tammi M, Johansson R, Kosma VM. Expression of CD 44s, CD 44 v 3 and CD 44 v 6 in benign and malignant breast lesions: correlation and colocalization with hyaluronan. Histopathology. 2005;47(4):420–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang SJ, Wong G, de Heer AM, Xia W, Bourguignon LY. CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope. 2009;119(8):1518–30.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104(24):10158–63.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–20.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 2010;107(8):3722–7.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Chen KL, Pan F, Jiang H, Chen JF, Pei L, Xie FW, et al. Highly enriched CD133(+) CD44(+) stem-like cells with CD133(+) CD44(high) metastatic subset in HCT116 colon cancer cells. Clin Exp Metastasis. 2011;28(8):751–63.PubMedCrossRefGoogle Scholar
  70. 70.
    Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67(5):2187–96.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.PubMedCrossRefGoogle Scholar
  72. 72.
    Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 2009;1(6–7):338–51.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101(39):14228–33.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA. 2004;101(3):781–6.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zhang SL, Wang YS, Zhou T, Yu XW, Wei ZT, Li YL. Isolation and characterization of cancer stem cells from cervical cancer HeLa cells. Cytotechnology. 2012;64(4):477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Fan X, Liu S, Su F, Pan Q, Lin T. Effective enrichment of prostate cancer stem cells from spheres in a suspension culture system. Urol Oncol. 2012;30(3):314–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J Clin Oncol. 2008;26(17):2862–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25(12):1696–708.PubMedCrossRefGoogle Scholar
  81. 81.
    Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T, et al. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis. 2009;26(5):433–46.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010;86(17–18):631–7.PubMedCrossRefGoogle Scholar
  83. 83.
    La Porta C. Cancer stem cells: lessons from melanoma. Stem Cell Rev. 2009;5(1):61–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, et al. Identification of cells initiating human melanomas. Nature. 2008;451(7176):345–9.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 2007;67(7):3153–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells: an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5(9):744–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Chambers I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells. 2004;6(4):386–91.PubMedCrossRefGoogle Scholar
  89. 89.
    Hatefi N, Nouraee N, Parvin M, Ziaee SA, Mowla SJ. Evaluating the expression of oct4 as a prognostic tumor marker in bladder cancer. Iran J Basic Med Sci. 2012;15(6):1154–61.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Alkatout I, Wiedermann M, Bauer M, Wenners A, Jonat W, Klapper W. Transcription factors associated with epithelial-mesenchymal transition and cancer stem cells in the tumor centre and margin of invasive breast cancer. Exp Mol Pathol. 2013;94(1):168–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Tomizawa Y, Wu TT, Wang KK. Epithelial mesenchymal transition and cancer stem cells in esophageal adenocarcinoma originating from Barrett’s esophagus. Oncol Lett. 2012;3(5):1059–63.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Ouyang G, Wang Z, Fang X, Liu J, Yang CJ. Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci. 2010;67(15):2605–18.PubMedCrossRefGoogle Scholar
  93. 93.
    Chen YC, Chang CJ, Hsu HS, Chen YW, Tai LK, Tseng LM, et al. Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncol. 2010;46(3):158–65.PubMedCrossRefGoogle Scholar
  94. 94.
    Yu X, Jiang X, Li H, Guo L, Jiang W, Lu SH. MiR-203 inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1. Stem Cells Dev. 2014;23(6):576–85.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Meysam Moghbeli
    • 1
  • Faezeh Moghbeli
    • 2
  • Mohammad Mahdi Forghanifard
    • 3
  • Mohammad Reza Abbaszadegan
    • 1
    • 4
  1. 1.Division of Human Genetics, Immunology Research Center, Avicenna Research InstituteMashhad University of Medical SciencesMashhadIran
  2. 2.Department of Biology, Mashhad BranchIslamic Azad UniversityMashhadIran
  3. 3.Department of Biology, Damghan BranchIslamic Azad UniversityDamghanIran
  4. 4.Medical Genetics Research Center, Medical SchoolMashhad University of Medical SciencesMashhadIran

Personalised recommendations