Advertisement

Medical Oncology

, 31:65 | Cite as

Down-regulation of miR-29c in human bladder cancer and the inhibition of proliferation in T24 cell via PI3K-AKT pathway

  • Yanru Fan
  • Xuedong Song
  • Hongfei Du
  • Chunli LuoEmail author
  • Xiaorong Wang
  • Xue Yang
  • Yin Wang
  • Xiaohou Wu
Original Paper

Abstract

The purpose of this study was to explore new tumor suppressor microRNA in bladder cancer and to conduct functional analysis of its suppressive role. To investigate the expression of miR-29c, qRT-PCR was used in 30 pairs of bladder cancer tissues and normal tissues (adjacent bladder tissue samples). The expression of miR-29c was down regulated in bladder cancer tissues compared with normal tissues. Also, the low-level expression of miR-29c was associated with tumor stage (P = 0.002), and ectopic over-expression of miR-29c in T24 cells can significantly inhibit cell proliferation, decrease motility, suppress the G1/S cell cycle transition and induce apoptosis. Furthermore, it could cause a decrease in AKT and GSK-3β phosphorylation. While LY294002 reduced the protein level of pAKT, the over-expression of miR-29c can further decrease its level in T24 cells pretreated with LY294002. Our study also indicated that the proliferation inhibition of T24 may take place via AKT-GSK3β pathway. Thus, miR-29c could be an active player in disease state of bladder cancer and it may be a promising tumor suppressor in bladder cancer.

Keywords

miR-29c Bladder cancer Proliferation Apoptosis Migration AKT 

Notes

Conflict of interest

None.

References

  1. 1.
    Ying SY, Chang DC, et al. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol. 2008;38:257–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Khan S, Brougham CL, Ryan J, et al. miR-379 regulates cyclin B1 expression and is decreased in breast cancer. PLoS ONE. 2013;8:e68753.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Liu R, Li J, Teng Z, et al. Overexpressed microRNA-182 promotes proliferation and invasion in prostate cancer PC-3 cells by down-regulating N-myc downstream regulated gene 1 (NDRG1). PLoS ONE. 2013;8:e68982.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011;11:644–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Ismaili N, Amzerin M, Flechon A. Chemotherapy in advanced bladder cancer: current status and future. J Hematol Oncol. 2011;4:35.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wallerand H, Reiter RR, Ravaud A. Molecular targeting in the treatment of either advanced or metastatic bladder cancer or both according to the signalling pathways. Curr Opin Urol. 2008;18:524–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Netto GJ, Epstein JI. Theranostic and prognostic biomarkers: genomic applications in urological malignancies. Pathology. 2010;42:384–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007;25:387–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Dyrskjøt L, Ostenfeld MS, Bramsen JB, et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res. 2009;69:4851–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang S, Xue S, Dai Y, et al. Reduced expression of microRNA-100 confers unfavorable prognosis in patients with bladder cancer. Diagn Pathol. 2012;7:159.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Nguyen T, Kuo C, Nicholl MB, et al. Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics. 2011;6:388–94.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Castilla MÁ, Moreno-Bueno G, Romero-Pérez L, et al. Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol. 2011;223:72–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Li Y, Wang F, Xu J, et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol. 2011;224:484–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Morita S, Horii T, Kimura M, et al. miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int J Mol Sci. 2013;14:14647–58.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Park SY, Lee JH, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol. 2009;16:23–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Li L, Sarver AL, Alamgir S, et al. Downregulation of microRNAs miR-1, -206 and -29 stabilizes PAX3 and CCND2 expression in rhabdomyosarcoma. Lab Invest. 2012;92:571–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Heinzelmann J, Henning B, Sanjmyatav J, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol. 2011;29:367–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Schaefer A, Jung M, Mollenkopf HJ, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76.PubMedGoogle Scholar
  21. 21.
    Zhao JJ, Lin J, Lwin T, et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 2010;115:2630–9.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Mott JL, Kobayashi S, Bronk SF, et al. Mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26:6133–40.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Garzon R, Heaphy CE, Havelange V, et al. MicroRNA 29b functions in acute myeloid leukemia. Blood. 2009;114:5331–41.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y, Zhou BP. Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer. 2011;30:603–11.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Yang Tao, Liang Ying, Lin Qinlu, et al. MiR-29 mediates TGFβ1 -induced extracellular matrix synthesis through activation of PI3 K-AKT pathway in human lung fibroblasts. J Cell Biochem. 2013;114:1336–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.PubMedCrossRefGoogle Scholar
  27. 27.
    Paez J, Sellers WR. PI3 K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res. 2003;115:145–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Knowles MA, Platt FM, Ross RL, et al. Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev. 2009;28:305–16.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Manning BD, Cantley LC. AKT/PKB signaling: navigating down- stream. Cell. 2007;129:1261–74.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Noguchi S, Yasui Y, Iwasaki J, et al. Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett. 2013;328:353–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Wei W, He HB, Zhang WY, et al. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis. 2013;4:e668.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Yang T, Liang Y, Lin Q, et al. miR-29 mediates TGFbeta1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J Cell Biochem. 2013;114:1336–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yanru Fan
    • 1
  • Xuedong Song
    • 1
  • Hongfei Du
    • 1
  • Chunli Luo
    • 1
    Email author
  • Xiaorong Wang
    • 1
  • Xue Yang
    • 1
  • Yin Wang
    • 1
  • Xiaohou Wu
    • 2
  1. 1.The Key Laboratory of Diagnostics Medicine Designated by the Ministry of EducationChongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations