Skip to main content

Advertisement

Log in

Vandetanib combined with a p38 MAPK inhibitor synergistically reduces glioblastoma cell survival

  • Short Communication
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The survival for patients with high-grade glioma is poor, and only a limited number of patients respond to the therapy. The aim of this study was to analyze the significance of using p38 MAPK phosphorylation as a prognostic marker in high-grade glioma patients and as a therapeutic target in combination chemotherapy with vandetanib. p38 MAPK phosphorylation was analyzed with immunohistochemistry in 90 high-grade glioma patients. Correlation between p38 MAPK phosphorylation and overall survival was analyzed with Mann–Whitney U test analysis. The effects on survival of glioblastoma cells of combining vandetanib with the p38 MAPK inhibitor SB 203580 were analyzed in vitro with the median-effect method with the fluorometric microculture cytotoxicity assay. Two patients had phosphorylated p38 MAPK in both the cytoplasm and nucleus, and these two presented with worse survival than patients with no detectable p38 MAPK phosphorylation or phosphorylated p38 MAPK only in the nucleus. This was true for both high-grade glioma patients (WHO grade III and IV, n = 90, difference in median survival: 6.1 months, 95 % CI [0.20, 23], p = 0.039) and for the subgroup with glioblastoma patients (WHO grade IV, n = 70, difference in median survival: 6.1 months, 95 % CI [0.066, 23], p = 0.043). The combination of vandetanib and the p38 MAPK inhibitor SB 203580 had synergistic effects on cell survival for glioblastoma-derived cells in vitro. In conclusion, p38 MAPK phosphorylation may be a prognostic marker for high-grade glioma patients, and vandetanib combined with a p38 MAPK inhibitor may be useful combination chemotherapy for glioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. van den Bent MJ, Dubbink HJ, Sanson M, van der Lee-Haarloo CR, Hegi M, Jeuken JWM, et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J Clin Oncol. 2009;27(35):5881–6.

    Article  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  3. Stupp R, Tonn JC, Brada M, Pentheroudakis G, Group EGW. High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v190–3.

    Article  PubMed  Google Scholar 

  4. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  5. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9(8):537–49.

    Article  PubMed  CAS  Google Scholar 

  6. Demuth T, Reavie LB, Rennert JL, Nakada M, Nakada S, Hoelzinger DB, et al. MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Mol Cancer Ther. 2007;6(4):1212–22.

    Article  PubMed  CAS  Google Scholar 

  7. Greenberg AK, Basu S, Hu J, Yie TA, Tchou-Wong KM, Rom WN, et al. Selective p38 activation in human non-small cell lung cancer. Am J Respir Cell Mol Biol. 2002;26(5):558–64.

    Article  PubMed  CAS  Google Scholar 

  8. Esteva FJ, Sahin AA, Smith TL, Yang Y, Pusztai L, Nahta R, et al. Prognostic significance of phosphorylated P38 mitogen-activated protein kinase and HER-2 expression in lymph node-positive breast carcinoma. Cancer. 2004;100(3):499–506.

    Article  PubMed  CAS  Google Scholar 

  9. Handra-Luca A, Lesty C, Hammel P, Sauvanet A, Rebours V, Martin A, et al. Biological and prognostic relevance of mitogen-activated protein kinases in pancreatic adenocarcinoma. Pancreas. 2012;41(3):416–21.

    Article  PubMed  CAS  Google Scholar 

  10. Huang W, Deng B, Wang RW, Tan QY, He Y, Jiang YG, et al. BCAR1 protein plays important roles in carcinogenesis and predicts poor prognosis in non-small-cell lung cancer. PLoS One. 2012;7(4):e36124.

    Article  PubMed  CAS  Google Scholar 

  11. Herbst RS, Sun Y, Eberhardt WE, Germonpre P, Saijo N, Zhou C, et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol. 2010;11(7):619–26.

    Article  PubMed  CAS  Google Scholar 

  12. Damiano V, Melisi D, Bianco C, Raben D, Caputo R, Fontanini G, et al. Cooperative antitumor effect of multitargeted kinase inhibitor ZD6474 and ionizing radiation in glioblastoma. Clin Cancer Res. 2005;11(15):5639–44.

    Article  PubMed  CAS  Google Scholar 

  13. Drappatz J, Norden AD, Wong ET, Doherty LM, Lafrankie DC, Ciampa A, et al. Phase I study of vandetanib with radiotherapy and temozolomide for newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys. 2010;78(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  14. Paillas S, Boissiere F, Bibeau F, Denouel A, Mollevi C, Causse A, et al. Targeting the p38 MAPK pathway inhibits irinotecan resistance in colon adenocarcinoma. Cancer Res. 2011;71(3):1041–9.

    Article  PubMed  CAS  Google Scholar 

  15. Guo X, Ma N, Wang J, Song J, Bu X, Cheng Y, et al. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells. BMC Cancer. 2008;8:375.

    Article  PubMed  Google Scholar 

  16. Hirose Y, Katayama M, Stokoe D, Haas-Kogan DA, Berger MS, Pieper RO. The p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents. Mol Cell Biol. 2003;23(22):8306–15.

    Article  PubMed  CAS  Google Scholar 

  17. Yoshino Y, Aoyagi M, Tamaki M, Duan L, Morimoto T, Ohno K. Activation of p38 MAPK and/or JNK contributes to increased levels of VEGF secretion in human malignant glioma cells. Int J Oncol. 2006;29(4):981–7.

    PubMed  CAS  Google Scholar 

  18. Gee E, Milkiewicz M, Haas TL. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J Cell Physiol. 2010;222(1):120–6.

    Article  PubMed  CAS  Google Scholar 

  19. Yilmaz A, Kliche S, Mayr-Beyrle U, Fellbrich G, Waltenberger J. p38 MAPK inhibition is critically involved in VEGFR-2-mediated endothelial cell survival. Biochem Biophys Res Commun. 2003;306(3):730–6.

    Article  PubMed  CAS  Google Scholar 

  20. Mueller KL, Powell K, Madden JM, Eblen ST, Boerner JL. EGFR tyrosine 845 phosphorylation-dependent proliferation and transformation of breast cancer cells require activation of p38 MAPK. Transl Oncol. 2012;5(5):327–34.

    PubMed  Google Scholar 

  21. Kampf C, Olsson I, Ryberg U, Sjostedt E, Ponten F. Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas. J Vis Exp. 2012; (63):e3620. doi:10.3791/3620.

  22. Lindhagen E, Nygren P, Larsson R. The fluorometric microculture cytotoxicity assay. Nat Protoc. 2008;3(8):1364–9.

    Article  PubMed  CAS  Google Scholar 

  23. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  PubMed  CAS  Google Scholar 

  24. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440–6.

    Article  PubMed  CAS  Google Scholar 

  25. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. H Hedman, Umea University, the UCSF Tissue Bank, and Dr. JS Guillamo for providing us with the glioma cell lines used in the experiments. We would also like to thank Dr. E. Freyhult at Bioinformatics Infrastructure for Life Sciences for statistical support. In addition, we would also like to express our gratitude for the financial support from the Cancer Foundation at Gavle Hospital, the Research Fund at the Department of Oncology, Uppsala University Hospital, the Swedish Cancer Society, the Swedish Research Council, and the Knut and Alice Wallenberg Foundation.

Conflict of interest

The authors declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Sooman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12032_2013_638_MOESM1_ESM.tif

Dose-effect curves (A) and median-effect plots (B) of vandetanib combined with SB 203580. The combination was tested in a vandetanib sensitive (left panel) and resistant cell line (right panel). fa = affected fraction, fu = unaffected fraction. (TIFF 2987 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sooman, L., Lennartsson, J., Gullbo, J. et al. Vandetanib combined with a p38 MAPK inhibitor synergistically reduces glioblastoma cell survival. Med Oncol 30, 638 (2013). https://doi.org/10.1007/s12032-013-0638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0638-0

Keywords

Navigation