Skip to main content

Advertisement

Log in

Expression of SIRT1 is associated with lymph node metastasis and poor prognosis in both operable triple-negative and non-triple-negative breast cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Several researches reported that overexpression of SIRT1 was associated with poor survival in several human cancers. However, some researches reported that SIRT1 had an antitumor potential. The definite role of SIRT1 is not clear now, and few studies have documented the value of SIRT1 in triple-negative breast cancer (TNBC). Therefore, the aim of this study is to evaluate the role of SIRT1 in TNBC and non-TNBC for prognosis. A total of 51 TNBC patients and 83 non-TNBC patients who were diagnosed from October 2001 to September 2006 were involved in this study. Immunohistochemical staining for SIRT1 and p53 on tissue microarrays were used. Expression of SIRT1 was seen in 55 % of TNBC patients and 53 % of non-TNBC patients. Expression of SIRT1 was associated with lymph nodes status, stage, distant metastatic relapse, and p53 status in TNBC patients. Expression of SIRT1 in non-TNBC patients was significantly correlated with lymph nodes status, age, stage, distant metastatic relapse, PR status, and p53 status. SIRT1+ group was associated with shorter DFS and OS compared with SIRT1− group in TNBC, non-TNBC, and overall breast cancer patients, according to univariate Cox regression analysis. Our study provides evidence that expression of SIRT is associated with worse prognosis in TNBC and non-TNBC and SIRT1 could be a potential therapeutic target in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35.

    Article  PubMed  CAS  Google Scholar 

  2. Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795–800.

    Article  PubMed  CAS  Google Scholar 

  3. Voelter-Mahlknecht S, Mahlknecht U. Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int J Mol Med. 2006;17(1):59–67.

    PubMed  CAS  Google Scholar 

  4. Vaziri H, Dessain SK, Ng EE, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149–59.

    Article  PubMed  CAS  Google Scholar 

  5. Luo J, Su F, Chen D, et al. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408(6810):377–81.

    Article  PubMed  CAS  Google Scholar 

  6. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–63.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell. 2004;13(5):627–38.

    Article  PubMed  CAS  Google Scholar 

  8. Lee JH, Song MY, Song EK, et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes. 2009;58(2):344–51.

    Article  PubMed  CAS  Google Scholar 

  9. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002;21(10):2383–96.

    Article  PubMed  CAS  Google Scholar 

  10. Jung-Hynes B, Nihal M, Zhong W, et al. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J Biol Chem. 2009;284(6):3823–32.

    Article  PubMed  CAS  Google Scholar 

  11. Cha EJ, Noh SJ, Kwon KS, et al. Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res. 2009;15(13):4453–9.

    Article  PubMed  CAS  Google Scholar 

  12. Jang KY, Kim KS, Hwang SH, et al. Expression and prognostic significance of SIRT1 in ovarian epithelial tumours. Pathology. 2009;41(4):366–71.

    Article  PubMed  CAS  Google Scholar 

  13. Choi HN, Bae JS, Jamiyandorj U, et al. Expression and role of SIRT1 in hepatocellular carcinoma. Oncol Rep. 2011;26(2):503–10.

    PubMed  CAS  Google Scholar 

  14. Jang KY, Hwang SH, Kwon KS, et al. SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma. Am J Surg Pathol. 2008;32(10):1523–31.

    Article  PubMed  Google Scholar 

  15. DeSantis C, Siegel R, Bandi P, et al. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61(6):409–18.

    Article  PubMed  Google Scholar 

  16. Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295(21):2492–502.

    Article  PubMed  CAS  Google Scholar 

  17. Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34.

    Article  PubMed  CAS  Google Scholar 

  18. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10(16):5367–74.

    Article  PubMed  CAS  Google Scholar 

  20. Rakha EA, El-Rehim DA, Paish C, et al. Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer. 2006;42(18):3149–56.

    Article  PubMed  CAS  Google Scholar 

  21. Sung JY, Kim R, Kim JE, et al. Balance between SIRT1 and DBC1 expression is lost in breast cancer. Cancer Sci. 2010;101(7):1738–44.

    Article  PubMed  CAS  Google Scholar 

  22. Lee H, Kim KR, Noh SJ, et al. Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma. Hum Pathol. 2011;42(2):204–13.

    Article  PubMed  CAS  Google Scholar 

  23. Tavassaoeli FA, Davilee P. Tumors of the breast and female genital organs. Classification of tumours. No 4. Lyon: IARC WHO; 2003.

  24. Greene FL, Page DL, Fleming ID, et al. AJCC Cancer Staging Manual. 6th ed. New York: Springer; 2002.

  25. Friedrichs K, Gluba S, Eidtmann H, et al. Overexpression of p53 and prognosis in breast cancer. Cancer. 1993;72(12):3641–7.

    Article  PubMed  CAS  Google Scholar 

  26. Galgano MT, Hampton GM, Frierson HJ. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod Pathol. 2006;19(6):847–53.

    PubMed  CAS  Google Scholar 

  27. Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE. 2008;3(4):e2020.

    Article  PubMed  Google Scholar 

  28. Dai Y, Ngo D, Forman LW, et al. Sirtuin 1 is required for antagonist-induced transcriptional repression of androgen-responsive genes by the androgen receptor. Mol Endocrinol. 2007;21(8):1807–21.

    Article  PubMed  CAS  Google Scholar 

  29. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369–80.

    Article  PubMed  CAS  Google Scholar 

  30. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–10.

    Article  PubMed  CAS  Google Scholar 

  31. Lozano G, Elledge SJ. p53 sends nucleotides to repair DNA. Nature. 2000;404(6773):24–5.

    Article  PubMed  CAS  Google Scholar 

  32. Schimmelpenning H, Eriksson ET, Zetterberg A, et al. Association of immunohistochemical p53 tumor suppressor gene protein overexpression with prognosis in highly proliferative human mammary adenocarcinomas. World J Surg. 1994;18(6):827–32, 832–33.

    Google Scholar 

  33. Bhargava V, Thor A, Deng G, et al. The association of p53 immunopositivity with tumor proliferation and other prognostic indicators in breast cancer. Mod Pathol. 1994;7(3):361–8.

    PubMed  CAS  Google Scholar 

  34. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001;107(2):137–48.

    Article  PubMed  CAS  Google Scholar 

  35. Lim CS. Human SIRT1: a potential biomarker for tumorigenesis? Cell Biol Int. 2007;31(6):636–7.

    Article  PubMed  CAS  Google Scholar 

  36. Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123(3):437–48.

    Article  PubMed  CAS  Google Scholar 

  37. Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 2003;100(19):10794–9.

    Article  PubMed  CAS  Google Scholar 

  38. Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9(Suppl 2):S73–81.

    Article  PubMed  CAS  Google Scholar 

  39. Kaplan HG, Malmgren JA, Atwood M. T1N0 triple negative breast cancer: risk of recurrence and adjuvant chemotherapy. Breast J. 2009;15(5):454–60.

    Article  PubMed  Google Scholar 

  40. Kaplan HG, Malmgren JA. Impact of triple negative phenotype on breast cancer prognosis. Breast J. 2008;14(5):456–63.

    Article  PubMed  Google Scholar 

  41. Kim MJ, Ro JY, Ahn SH, et al. Clinicopathologic significance of the basal-like subtype of breast cancer: a comparison with hormone receptor and Her2/neu-overexpressing phenotypes. Hum Pathol. 2006;37(9):1217–26.

    Article  PubMed  CAS  Google Scholar 

  42. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26(15):2568–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patients who participate in this study, and Dr. Jingping Yun, Mayan Huang, and Xingjuan Yu for assistance on tissue microarray construction and IHC analysis. Grant support is given by Key program of National Natural Science Foundation of China (31030061); Natural Science Foundation of Guangdong Province, China (9151008901000124); and Science and Technology Planning Project of Guangzhou, China (10C32060205).

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Wei, W., Xiao, X. et al. Expression of SIRT1 is associated with lymph node metastasis and poor prognosis in both operable triple-negative and non-triple-negative breast cancer. Med Oncol 29, 3240–3249 (2012). https://doi.org/10.1007/s12032-012-0260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-012-0260-6

Keywords

Navigation