Skip to main content
Log in

Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation

Medical Oncology Aims and scope Submit manuscript

Abstract

Genistein (Gen), a soy isoflavone, is considered to exert potent antitumor effect partially through its anti-angiogenesis property. However, the precise molecular mechanism is still unknown. Our previous investigations have demonstrated that genistein down-regulates expression of pro-angiogenic factors via inhibiting protein tyrosine kinase (PTK) activity both in breast cancer cells and in xenograft tumors. In the present experiment, we chose cultured human umbilical vein endothelial cells (HUVECs), which have a considerable role in tumor angiogenesis formation, to explore the influence of genistein on VEGF-stimulated endothelial cell activation and the underlying mechanism. Stimulation of human primary HUVECs by VEGF not only increased endothelial cell protein tyrosine kinase (PTK) activity but also augmented matrix metalloproteinase-2 (MMP-2), -9 secretions and increased MMP-2, -9 activities. Treatment of ECs with genistein induced VEGF-loaded endothelial apoptosis by inhibiting production and activity of matrix metalloproteinases (MMPs). In addition, exposure to genistein decreased activation of JNK and p38, not ERK-1/2, induced by VEGF. Collectively, our findings suggested that the inhibition of PTK activity and MAPK activation and the decrease in MMPs production and activity by genistein interrupt VEGF-stimulated endothelial cell activation, which thereby may represent a mechanism that would explain the anti-angiogenesis effect of genistein and its cancer-protective function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Grimm D, Bauer J, Schoenberger J. Blockade of neoangiogenesis, a new and promising technique to control the growth of malignant tumors and their metastases. Curr Vasc Pharmacol. 2009;7:347–57.

    Article  PubMed  CAS  Google Scholar 

  2. Saphir A. Angiogenesis: the unifying concept in cancer? J Natl Cancer Inst. 1997;89:1658–9.

    PubMed  CAS  Google Scholar 

  3. Heath VL, Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol. 2009;6:395–404.

    Article  PubMed  CAS  Google Scholar 

  4. Gasparini G, Longo R, Toi M, Ferrara N. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol. 2005;2:562–77.

    Article  PubMed  CAS  Google Scholar 

  5. Miyazawa T, Shibata A, Nakagawa K, Tsuzuki T. Anti-angiogenic function of tocotrienol. Asia Pac J Clin Nutr. 2008;17:253S–6S.

    Google Scholar 

  6. Sistla A, Kertelj A, Shenoy N. Development of an intravenous formulation of SU010382 (prodrug of SU5416, an anti-angiogenesis agent). PDA J Pharm Sci Technol. 2008;62:200–10.

    PubMed  CAS  Google Scholar 

  7. Giles FJ. The vascular endothelial growth factor (VEGF) signaling pathway: a therapeutic target in patients with hematologic malignancies. Oncologist. 2001;5(6 Suppl):32–9.

    Article  Google Scholar 

  8. Kułdo JM, Ogawara KI, Werner N, Asgeirsdóttir SA, Kamps JA, Kok RJ, Molema G. Molecular pathways of endothelial cell activation for (targeted) pharmacological intervention of chronic inflammatory diseases. Curr Vasc Pharmacol. 2005;3:11–39.

    Article  PubMed  Google Scholar 

  9. Lutsenko SV, Kiselev SM, Severin SE. Molecular mechanisms of tumor angiogenesis. Biochemistry (Mosc). 2003;68:286–300.

    Article  CAS  Google Scholar 

  10. Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie. 2005;87:287–97.

    Article  PubMed  CAS  Google Scholar 

  11. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987;262:5592–5.

    PubMed  CAS  Google Scholar 

  12. Banerjee S, Li Y, Wang Z, Sarkar FH. Multi-targeted therapy of cancer by genistein. Cancer Lett. 2008;269:226–42.

    Article  PubMed  CAS  Google Scholar 

  13. Yu XP, Mi MT, Zhu JD. Effect of genistein on expression of angiogenesis related factors in HER-2/neu-overexpressing breast cancer cells. Shi Yan Sheng Wu Xue Bao. 2004;37:251–3.

    PubMed  CAS  Google Scholar 

  14. Furuya M, Yonemitsu Y, Aoki I III. Angiogenesis: complexity of tumor vasculature and microenvironment. Curr Pharm Des. 2009;15:1854–67.

    Article  PubMed  CAS  Google Scholar 

  15. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 2006;52:2745–56.

    Article  Google Scholar 

  16. Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol. 2003;23:769–75.

    Article  PubMed  CAS  Google Scholar 

  17. Yu X, Chen K, Wei N, Zhang Q, Liu J, Mi M. Dietary taurine reduces retinal damage produced by photochemical stress via antioxidant and anti-apoptotic mechanisms in Sprague-Dawley rats. Br J Nutr. 2007;98:711–9.

    Article  PubMed  CAS  Google Scholar 

  18. Xu J, Liu X, Jiang Y, Chu L, Hao H, Liua Z, Verfaillie C, Zweier J, Gupta K, Liu Z. MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. J Cell Mol Med. 2008;12:2395–406.

    Article  PubMed  CAS  Google Scholar 

  19. Issbrücker K, Marti HH, Hippenstiel S, Springmann G, Voswinckel R, Gaumann A, Breier G, Drexler HC, Suttorp N, Clauss M. p38 MAP kinase—a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. FASEB J. 2003;17:262–4.

    PubMed  Google Scholar 

  20. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81:230S–42S.

    PubMed  CAS  Google Scholar 

  21. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005;81:243S–55S.

    PubMed  CAS  Google Scholar 

  22. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest. 2003;21:744–57.

    Article  PubMed  CAS  Google Scholar 

  23. Lambert JD, Kwon SJ, Ju J, Bose M, Lee MJ, Hong J, Hao X, Yang CS. Effect of genistein on the bioavailability and intestinal cancer chemopreventive activity of (-)-epigallocatechin-3-gallate. Carcinogenesis. 2008;29:2019–24.

    Article  PubMed  CAS  Google Scholar 

  24. Manjanatha MG, Shelton S, Bishop ME, Lyn-Cook LE, Aidoo A. Dietary effects of soy isoflavones daidzein and genistein on 12-dimethylbenz[a]anthracene- induced mammary mutagenesis and carcinogenesis in ovariectomized Big Blue transgenic rats. Carcinogenesis. 2006;27:2555–64.

    Article  PubMed  CAS  Google Scholar 

  25. Steele VE, Pereira MA, Sigman CC, Kelloff GJ. Cancer chemoprevention agent development strategies for genistein. J Nutr. 1995;125:713S–6S.

    PubMed  CAS  Google Scholar 

  26. Sarkar FH, Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev. 2002;21:265–80.

    Article  PubMed  CAS  Google Scholar 

  27. El-Rayes BF, Ali S, Ali IF, Philip PA, Abbruzzese J, Sarkar FH. Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-kappaB. Cancer Res. 2006;66:10553–9.

    Article  PubMed  CAS  Google Scholar 

  28. Li Y, Sarkar FH. Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res. 2002;8:2369–77.

    PubMed  CAS  Google Scholar 

  29. Polkowski K, Mazurek AP. Biological properties of genistein. A review of in vitro and in vivo data. Acta Pol Pharm. 2000;57:135–55.

    PubMed  CAS  Google Scholar 

  30. Martínez A. A new family of angiogenic factors. Cancer Lett. 2006;236:157–63.

    Article  PubMed  Google Scholar 

  31. Jurczyńska J, Zieleniewski W, Stepień H, Komorowski J. Angiogenic and anti-angiogenic factors in adrenal tumours. Endokrynol Pol. 2006;57:633–40.

    PubMed  Google Scholar 

  32. Kitadai Y, Onogawa S, Kuwai T, Matsumura S, Hamada H, Ito M, Tanaka S, Yoshihara M, Chayama K. Angiogenic switch occurs during the precancerous stage of human esophageal squamous cell carcinoma. Oncol Rep. 2004;11:315–9.

    PubMed  CAS  Google Scholar 

  33. Yoon HS, Rho SH, Jeong JH, Yoon S, Yoo KS, Yoo YH. Genistein produces reduction in growth and induces apoptosis of rat RPE-J cells. Curr Eye Res. 2000;20:215–24.

    PubMed  CAS  Google Scholar 

  34. Sprenger CC, Plymate SR, Reed MJ. Extracellular influences on tumour angiogenesis in the aged host. Br J Cancer. 2008;98:250–5.

    Article  PubMed  CAS  Google Scholar 

  35. Huang SC, Sheu BC, Chang WC, Cheng CY, Wang PH, Lin S. Extracellular matrix proteases-cytokine regulation role in cancer and pregnancy. Front Biosci. 2009;14:1571–88.

    Article  PubMed  Google Scholar 

  36. Sounni NE, Noel A. Membrane type-matrix metalloproteinases and tumor progression. Biochimie. 2005;87:329–42.

    Article  PubMed  CAS  Google Scholar 

  37. Liu D, Homan LL, Dillon JS. Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 5′-monophosphate-dependent mechanism. Endocrinology. 2004;145:5532–9.

    Article  PubMed  CAS  Google Scholar 

  38. Huang X, Chen S, Xu L, Liu Y, Deb DK, Platanias LC, Bergan RC. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res. 2005;65:3470–8.

    PubMed  CAS  Google Scholar 

  39. Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H, Manabe T. Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol Cancer. 2005;4:37–48.

    Article  PubMed  Google Scholar 

  40. King RA, Bursill DB. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am J Clin Nutr. 1998;67:867–72.

    PubMed  CAS  Google Scholar 

  41. Nichols MR, Morimoto BH. Tyrosine kinase-independent inhibition of cyclic-AMP phosphodiesterase by genistein and tyrphostin 51. Arch Biochem Biophys. 1999;366:224–30.

    Article  PubMed  CAS  Google Scholar 

  42. Kim MH. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem. 2003;89:529–38.

    Article  PubMed  CAS  Google Scholar 

  43. Parfenova H, Balabanova L, Leffler CW. Posttranslational regulation of cyclooxygenase by tyrosine phosphorylation in cerebral endothelial cells. Am J Physiol Cell Physiol. 1998;274:C72–81.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Natural Science Foundation of China (30771794, 30972462), the Program for New Century Excellent Talents in University (NCET-08-0901), the Key Project of Chinese Ministry of Education (208123), Youth Technological Found of Science and Technology Department of Sichuan Province (08ZQ026-036), Emphasis Item of Education Department of Sichuan Province (07ZA015), and Found of Chengdu Medical College (CYZ07-001). We gratefully thank Yang Min MD, PhD for technical assistance and acknowledge Fred Bogott, MD, PhD (University of Minnesota, USA) for editing the textual aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mantian Mi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Zhu, J., Mi, M. et al. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med Oncol 29, 349–357 (2012). https://doi.org/10.1007/s12032-010-9770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9770-2

Keywords

Navigation