Skip to main content

Advertisement

Log in

Copy-number increase of AURKA in gastric cancers in a Chinese population: a correlation with tumor progression

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The centrosome-associated kinase aurora A (AURKA) has been shown to be involved in genetic instability and to be over-expressed in several human carcinomas including gastric cancers (GCs). The chromosome locus of AURKA, 20q13, is frequently amplified in GCs, and the functional impact of such regions needs to be extensively investigated in large amount of clinical samples. Case-matched tissues of gastric carcinomas and adjacent normal epithelium (n = 141) were included in this study. Quantitative PCR was carried out to examine the copy number and mRNA expression of AURKA in GCs. Our results showed copy-number gains of AUKRA were detected in a relative high percentage of GC samples (30.5%, 43 out of 141). There was a positive correlation between copy-number increase of AURKA and tumor progression. And copy-number gains of AURKA also showed a positive correlation with mRNA over-expression in GCs. However, expression level of AURKA mRNA was also enhanced in the group of GC samples with unaltered copy numbers. These findings indicated that sporadic gastric cancers exhibit different mechanisms of AURKA regulation and that this may impact the efficacy of aurora-targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Goepfert TM, Brinkley BR. The centrosome-associated aurora/ipl-like kinase family. Curr Top Dev Biol. 2000;49:331–42.

    Article  PubMed  CAS  Google Scholar 

  2. Kimura M, Okano Y. Aurora kinases and cancer. Gan To Kagaku Ryoho. 2005;32:1–5.

    PubMed  CAS  Google Scholar 

  3. Ikezoe T. Aurora kinases as an anti-cancer target. Cancer Lett. 2008;262(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  4. Kamada K, Yamada Y, Hirao T, Fujimoto H, Takahama Y, et al. Amplification/overexpression of aurora-a in human gastric carcinoma. Potential role in differentiated type gastric carcinogenesis. Oncol Rep. 2004;12:593–9.

    PubMed  CAS  Google Scholar 

  5. Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, et al. Frequent overexpression of aurora kinase a in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer. 2008;112:1688–98.

    Article  PubMed  CAS  Google Scholar 

  6. Park HS, Park WS, Bondaruk J, Tanaka N, Katayama H, et al. Quantitation of aurora kinase a gene copy number in urine sediments and bladder cancer detection. J Natl Cancer Inst. 2008;100:1401–11.

    Article  PubMed  CAS  Google Scholar 

  7. Andrews J, Kennette W, Pilon J, Hodgson A, Tuck AB, et al. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number. PLoS One. 2010;5:e8665.

    Article  PubMed  Google Scholar 

  8. Diskin SJ, Hou C, Glessner JT, Attiyeh EF, Laudenslager M, et al. Copy number variation at 1q21.1 associated with neuroblastoma. Nature. 2009;459:987–91.

    Article  PubMed  CAS  Google Scholar 

  9. Liu W, Sun J, Li G, Zhu Y, Zhang S, et al. Association of a germ-line copy number variation at 2p24.3 and risk for aggressive prostate cancer. Cancer Res. 2009;69:2176–9.

    Article  PubMed  CAS  Google Scholar 

  10. Buffart TE, van Grieken NC, Tijssen M, Coffa J, Ylstra B, et al. High resolution analysis of DNA copy-number aberrations of chromosomes 8, 13, and 20 in gastric cancers. Virchows Arch. 2009;455:213–23.

    Article  PubMed  CAS  Google Scholar 

  11. Sakakura C, Mori T, Sakabe T, Ariyama Y, Shinomiya T, et al. Gains, losses, and amplifications of genomic materials in primary gastric cancers analyzed by comparative genomic hybridization. Genes Chromosom Cancer. 1999;24:299–305.

    Article  PubMed  CAS  Google Scholar 

  12. Vauhkonen H, Vauhkonen M, Sajantila A, Sipponen P, Knuutila S. DNA copy number aberrations in intestinal-type gastric cancer revealed by array-based comparative genomic hybridization. Cancer Genet Cytogenet. 2006;167:150–4.

    Article  PubMed  CAS  Google Scholar 

  13. Lam AK, Ong K, Ho YH. Aurora kinase expression in colorectal adenocarcinoma. Correlations with clinicopathological features, p16 expression, and telomerase activity. Hum Pathol. 2008;39:599–604.

    Article  PubMed  CAS  Google Scholar 

  14. Lassmann S, Danciu M, Muller M, Weis R, Makowiec F, et al. Aurora a is differentially expressed and regulated in chromosomal and microsatellite instable sporadic colorectal cancers. Mod Pathol. 2009;22:1385–97.

    Article  PubMed  CAS  Google Scholar 

  15. Kyrlagkitsis I, Karamanolis DG. Genes and gastric cancer. Hepatogastroenterology. 2004;51:320–7.

    PubMed  Google Scholar 

  16. Wu CW, Chi CW, Lin WC. Gastric cancer. Prognostic and diagnostic advances. Expert Rev Mol Med. 2002;4:1–12.

    Article  PubMed  Google Scholar 

  17. Kikuchi K, Ueda M, Kitajima M. Molecular biology in gastric cancer. Gan To Kagaku Ryoho. 1999;26:2139–46.

    PubMed  CAS  Google Scholar 

  18. Dear PH. Copy-number variation. The end of the human genome? Trends Biotechnol. 2009;27:448–54.

    Article  PubMed  CAS  Google Scholar 

  19. Shlien A, Tabori U, Marshall CR, Pienkowska M, Feuk L, et al. Excessive genomic DNA copy number variation in the li-fraumeni cancer predisposition syndrome. Proc Natl Acad Sci USA. 2008;105:11264–9.

    Article  PubMed  CAS  Google Scholar 

  20. Grubor V, Krasnitz A, Troge JE, Meth JL, Lakshmi B, et al. Novel genomic alterations and clonal evolution in chronic lymphocytic leukemia revealed by representational oligonucleotide microarray analysis (roma). Blood. 2009;113:1294–303.

    Article  PubMed  CAS  Google Scholar 

  21. Gunnarsson R, Staaf J, Jansson M, Ottesen AM, Goransson H, et al. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia–a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosom Cancer. 2008;47:697–711.

    Article  PubMed  CAS  Google Scholar 

  22. Schafer M, Schwender H, Merk S, Haferlach C, Ickstadt K, et al. Integrated analysis of copy number alterations and gene expression. A bivariate assessment of equally directed abnormalities. Bioinformatics. 2009;25:3228–35.

    Article  PubMed  Google Scholar 

  23. Strefford JC, van Delft FW, Robinson HM, Worley H, Yiannikouris O, et al. Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci USA. 2006;103:8167–72.

    Article  PubMed  CAS  Google Scholar 

  24. Sulong S, Moorman AV, Irving JA, Strefford JC, Konn ZJ, et al. A comprehensive analysis of the cdkn2a gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood. 2009;113:100–7.

    Article  PubMed  CAS  Google Scholar 

  25. Vauhkonen H, Vauhkonen M, Sipponen P, Knuutila S. Oligonucleotide array comparative genomic hybridization refines the structure of 8p23.1, 17q12 and 20q13.2 amplifications in gastric carcinomas. Cytogenet Genome Res. 2007;119:39–45.

    Article  PubMed  CAS  Google Scholar 

  26. Aust DE, Muders M, Kohler A, Schmidt M, Diebold J, et al. Prognostic relevance of 20q13 gains in sporadic colorectal cancers. A fish analysis. Scand J Gastroenterol. 2004;39:766–72.

    Article  PubMed  CAS  Google Scholar 

  27. Dermitzakis ET, Stranger BE. Genetic variation in human gene expression. Mamm Genome. 2006;17:503–8.

    Article  PubMed  Google Scholar 

  28. Reymond A, Henrichsen CN, Harewood L, Merla G. Side effects of genome structural changes. Curr Opin Genet Dev. 2007;17:381–6.

    Article  PubMed  CAS  Google Scholar 

  29. Guryev V, Saar K, Adamovic T, Verheul M, van Heesch SA, et al. Distribution and functional impact of DNA copy number variation in the rat. Nat Genet. 2008;40:538–45.

    Article  PubMed  CAS  Google Scholar 

  30. Henrichsen CN, Vinckenbosch N, Zollner S, Chaignat E, Pradervand S, et al. Segmental copy number variation shapes tissue transcriptomes. Nat Genet. 2009;41:424–9.

    Article  PubMed  CAS  Google Scholar 

  31. Fujita Y, Sakakura C, Shimomura K, Nakanishi M, Yasuoka R, et al. Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Hepatogastroenterology. 2003;50:1857–63.

    PubMed  CAS  Google Scholar 

  32. Agnese V, Cabibi D, Calcara D, Terrasi M, Pantuso G, et al. Aurora-a overexpression as an early marker of reflux-related columnar mucosa and barrett’s oesophagus. Ann Oncol. 2007;18(Suppl 6):vi110–5.

    Article  PubMed  Google Scholar 

  33. Tong T, Zhong Y, Kong J, Dong L, Song Y, et al. Overexpression of aurora-a contributes to malignant development of human esophageal squamous cell carcinoma. Clin Cancer Res. 2004;10:7304–10.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka E, Hashimoto Y, Ito T, Okumura T, Kan T, et al. The clinical significance of aurora-a/stk15/btak expression in human esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11:1827–34.

    Article  PubMed  CAS  Google Scholar 

  35. Yamashita K, Igarashi H, Kitayama Y, Ozawa T, Kiyose S, et al. Chromosomal numerical abnormality profiles of gastrointestinal stromal tumors. Jpn J Clin Oncol. 2006;36:85–92.

    Article  PubMed  Google Scholar 

  36. Jeng YM, Peng SY, Lin CY, Hsu HC. Overexpression and amplification of aurora-a in hepatocellular carcinoma. Clin Cancer Res. 2004;10:2065–71.

    Article  PubMed  CAS  Google Scholar 

  37. Rojanala S, Han H, Munoz RM, Browne W, Nagle R, et al. The mitotic serine threonine kinase, aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther. 2004;3:451–7.

    Article  PubMed  CAS  Google Scholar 

  38. Zhu J, Abbruzzese JL, Izzo J, Hittelman WN, Li D. Aurka amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells. Cancer Genet Cytogenet. 2003;2005:159.10–7.

    Google Scholar 

  39. Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, et al. Overexpression of oncogenic stk15/btak/aurora a kinase in human pancreatic cancer. Clin Cancer Res. 2003;9:991–7.

    PubMed  CAS  Google Scholar 

  40. Nishida N, Nagasaka T, Kashiwagi K, Boland CR, Goel A. High copy amplification of the aurora-a gene is associated with chromosomal instability phenotype in human colorectal cancers. Cancer Biol Ther. 2007;6:525–33.

    Article  PubMed  CAS  Google Scholar 

  41. Baba Y, Nosho K, Shima K, Irahara N, Kure S, et al. Aurora-a expression is independently associated with chromosomal instability in colorectal cancer. Neoplasia. 2009;11:418–25.

    PubMed  CAS  Google Scholar 

  42. Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, et al. Tumour-amplified kinase btak is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer. 2001;84:824–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wan.

Additional information

Z. Fang and Y. Xiong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Z., Xiong, Y., Li, J. et al. Copy-number increase of AURKA in gastric cancers in a Chinese population: a correlation with tumor progression. Med Oncol 28, 1017–1022 (2011). https://doi.org/10.1007/s12032-010-9602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9602-4

Keywords

Navigation