Skip to main content

Advertisement

Log in

Mechanism of action of immunomodulatory agents in multiple myeloma

  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Immunomodulatory agents (IMiD’s) have become an important drug category in the treatment of multiple myeloma. The agents have a complex mechanism of action that influence the microenvironment in the bone marrow. The microenvironment is an essential promotor of disease progression and therefore important in targeting the disease. The article reviews mechanism of action and essential pathways of IMiD’s that are important in disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson KC. Lenalidomide and thalidomide: mechanisms of action—similarities and differences. Semin Hematol. 2005;42:S3–8.

    Article  CAS  PubMed  Google Scholar 

  2. Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002;99:4525–30.

    Article  CAS  PubMed  Google Scholar 

  3. Gandhi AK, Kang J, Naziruddin S, Parton A, Schafer PH, Stirling DI. Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly. Leuk Res. 2006;30:849–58.

    Article  CAS  PubMed  Google Scholar 

  4. Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000;96:2943–50.

    CAS  PubMed  Google Scholar 

  5. Teoh G, Anderson KC. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol Oncol Clin North Am. 1997;11:27–42.

    Article  CAS  PubMed  Google Scholar 

  6. Abe M, Hiura K, Ozaki S, Kido S, Matsumoto T. Vicious cycle between myeloma cell binding to bone marrow stromal cells via VLA-4-VCAM-1 adhesion and macrophage inflammatory protein-1alpha and MIP-1beta production. J Bone Miner Metab. 2009;27:16–23.

    Article  CAS  PubMed  Google Scholar 

  7. Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001;15:1950–61.

    CAS  PubMed  Google Scholar 

  8. Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87:1104–12.

    CAS  PubMed  Google Scholar 

  9. Mitsiades CS, Mitsiades NS, Richardson PG, Munshi NC, Anderson KC. Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J Cell Biochem. 2007;101:950–68.

    Article  CAS  PubMed  Google Scholar 

  10. Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002;277:16639–47.

    Article  CAS  PubMed  Google Scholar 

  11. Jelinek DF, Witzig TE, Arendt BK. A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth. J Immunol. 1997;159:487–96.

    CAS  PubMed  Google Scholar 

  12. Richardson PG, Schlossman RL, Weller E, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002;100:3063–7.

    Article  CAS  PubMed  Google Scholar 

  13. Corral LG, Muller GW, Moreira AL, et al. Selection of novel analogs of thalidomide with enhanced tumor necrosis factor alpha inhibitory activity. Mol Med. 1996;2:506–15.

    CAS  PubMed  Google Scholar 

  14. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91:4082–5.

    Article  PubMed  Google Scholar 

  15. Kenyon BM, Browne F, D’Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res. 1997;64:971–8.

    Article  CAS  PubMed  Google Scholar 

  16. Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87:1166–72.

    Article  CAS  PubMed  Google Scholar 

  17. Teo SK, Stirling DI, Zeldis JB. Thalidomide as a novel therapeutic agent: new uses for an old product. Drug Discov Today. 2005;10:107–14.

    Article  CAS  PubMed  Google Scholar 

  18. Lentzsch S, Rogers MS, LeBlanc R, et al. S-3-Amino-phthalimido-glutarimide inhibits angiogenesis and growth of B-cell neoplasias in mice. Cancer Res. 2002;62:2300–5.

    CAS  PubMed  Google Scholar 

  19. Corral LG, Haslett PA, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 1999;163:380–6.

    CAS  PubMed  Google Scholar 

  20. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98:210–6.

    Article  CAS  PubMed  Google Scholar 

  21. LeBlanc R, Hideshima T, Catley LP, et al. Immunomodulatory drug co stimulates T cells via the B7-CD28 pathway. Blood. 2004;103:1787–90.

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi T, Hideshima T, Akiyama M, et al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood. 2003;102:1435–42.

    Article  CAS  PubMed  Google Scholar 

  23. Hideshima T, Anderson KC. Preclinical studies of novel targeted therapies. Hematol Oncol Clin North Am. 2007;21:1071–91. Viii–ix.

    Article  PubMed  Google Scholar 

  24. Tai YT, Li XF, Catley L, et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005;65:11712–20.

    Article  CAS  PubMed  Google Scholar 

  25. Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565–71.

    Article  CAS  PubMed  Google Scholar 

  26. Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer. 2002;2:927–37.

    Article  CAS  PubMed  Google Scholar 

  27. Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC. Thalidomide and lenalidomide: mechanism-based potential drug combinations. Leuk Lymphoma. 2008;49:1238–45.

    Article  CAS  PubMed  Google Scholar 

  28. Laubach JP, Mahindra A, Mitsiades CS, et al. The use of novel agents in the treatment of relapsed and refractory multiple myeloma. Leukemia. 2009.

  29. Chauhan D, Anderson KC. Apoptosis in multiple myeloma: therapeutic implications. Apoptosis. 2001;6:47–55.

    Article  CAS  PubMed  Google Scholar 

  30. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem. 1998;254:439–59.

    Article  CAS  PubMed  Google Scholar 

  31. Mitsiades N, Mitsiades CS, Poulaki V, Anderson KC, Treon SP. Intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human multiple myeloma cells. Blood. 2002;99:2162–71.

    Article  CAS  PubMed  Google Scholar 

  32. Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS. Role of NF-kappa B in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood. 1999;93:3044–52.

    CAS  PubMed  Google Scholar 

  33. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 2001;20:5991–6000.

    Article  CAS  PubMed  Google Scholar 

  34. Chauhan D, Anderson KC. Apoptosis in multiple myeloma: therapeutic implications. Apoptosis. 2001;6:47–55.

    Article  CAS  PubMed  Google Scholar 

  35. Hideshima T, Raje N, Richardson PG, Anderson KC. A review of lenalidomide in combination with dexamethasone for the treatment of multiple myeloma. Ther Clin Risk Manag. 2008;4:129–36.

    CAS  PubMed  Google Scholar 

  36. Terpos E, Dimopoulos MA, Sezer O. The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma. Leukemia. 2007;21:1875–84.

    Article  CAS  PubMed  Google Scholar 

  37. Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia. 2008;22:1925–32.

    Article  CAS  PubMed  Google Scholar 

  38. Giuliani N, Morandi F, Tagliaferri S, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood. 2007;110:334–8.

    Article  CAS  PubMed  Google Scholar 

  39. Raje N, Kumar S, Hideshima T, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004;104:4188–93.

    Article  CAS  PubMed  Google Scholar 

  40. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93:1658–67.

    CAS  PubMed  Google Scholar 

  41. Landowski TH, Olashaw NE, Agrawal D, Dalton WS. Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene. 2003;22:2417–21.

    Article  CAS  PubMed  Google Scholar 

  42. Lin YC, Shun CT, Wu MS, Chen CC. A novel anticancer effect of thalidomide: inhibition of intercellular adhesion molecule-1-mediated cell invasion and metastasis through suppression of nuclear factor-kappa B. Clin Cancer Res. 2006;12:7165–73.

    Article  CAS  PubMed  Google Scholar 

  43. Palumbo A, Bringhen S, Caravita T, et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet. 2006;367:825–31.

    Article  CAS  PubMed  Google Scholar 

  44. Palumbo A, Falco P, Corradini P, et al. Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: a report from the GIMEMA–Italian Multiple Myeloma Network. J Clin Oncol. 2007;25:4459–65.

    Article  CAS  PubMed  Google Scholar 

  45. Morgan GJ, Schey SA, Wu P, et al. Lenalidomide (Revlimid), in combination with cyclophosphamide and dexamethasone (RCD), is an effective and tolerated regimen for myeloma patients. Br J Haematol. 2007;137:268–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by Department of Veterans Affairs Merit Review Award (and NIH grant RO1-124929, P50-100707 and PO1-78378 (NCM).

Conflict of interest statements

Thomas Reske: No conflicts to report. Mariateresa Fulciniti and Nikhil C. Munshi: Advisory board/Consultant for Celgene Corporation, Millennium Pharmaceuticals, Inc., Novartis Pharmaceuticals Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil C. Munshi.

Additional information

All authors received an honorarium for their participation in this supplement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reske, T., Fulciniti, M. & Munshi, N.C. Mechanism of action of immunomodulatory agents in multiple myeloma. Med Oncol 27 (Suppl 1), 7–13 (2010). https://doi.org/10.1007/s12032-010-9527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9527-y

Keywords

Navigation