Advertisement

Medical Oncology

, Volume 27, Supplement 1, pp 7–13 | Cite as

Mechanism of action of immunomodulatory agents in multiple myeloma

  • Thomas Reske
  • Mariateresa Fulciniti
  • Nikhil C. MunshiEmail author
Article

Abstract

Immunomodulatory agents (IMiD’s) have become an important drug category in the treatment of multiple myeloma. The agents have a complex mechanism of action that influence the microenvironment in the bone marrow. The microenvironment is an essential promotor of disease progression and therefore important in targeting the disease. The article reviews mechanism of action and essential pathways of IMiD’s that are important in disease treatment.

Keywords

Immunomodulatory agents Bone marrow microenvironment Multiple myeloma 

Notes

Acknowledgment

This work is supported by Department of Veterans Affairs Merit Review Award (and NIH grant RO1-124929, P50-100707 and PO1-78378 (NCM).

Conflict of interest statements

Thomas Reske: No conflicts to report. Mariateresa Fulciniti and Nikhil C. Munshi: Advisory board/Consultant for Celgene Corporation, Millennium Pharmaceuticals, Inc., Novartis Pharmaceuticals Corporation.

References

  1. 1.
    Anderson KC. Lenalidomide and thalidomide: mechanisms of action—similarities and differences. Semin Hematol. 2005;42:S3–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002;99:4525–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Gandhi AK, Kang J, Naziruddin S, Parton A, Schafer PH, Stirling DI. Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly. Leuk Res. 2006;30:849–58.CrossRefPubMedGoogle Scholar
  4. 4.
    Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000;96:2943–50.PubMedGoogle Scholar
  5. 5.
    Teoh G, Anderson KC. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol Oncol Clin North Am. 1997;11:27–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Abe M, Hiura K, Ozaki S, Kido S, Matsumoto T. Vicious cycle between myeloma cell binding to bone marrow stromal cells via VLA-4-VCAM-1 adhesion and macrophage inflammatory protein-1alpha and MIP-1beta production. J Bone Miner Metab. 2009;27:16–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001;15:1950–61.PubMedGoogle Scholar
  8. 8.
    Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87:1104–12.PubMedGoogle Scholar
  9. 9.
    Mitsiades CS, Mitsiades NS, Richardson PG, Munshi NC, Anderson KC. Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J Cell Biochem. 2007;101:950–68.CrossRefPubMedGoogle Scholar
  10. 10.
    Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002;277:16639–47.CrossRefPubMedGoogle Scholar
  11. 11.
    Jelinek DF, Witzig TE, Arendt BK. A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth. J Immunol. 1997;159:487–96.PubMedGoogle Scholar
  12. 12.
    Richardson PG, Schlossman RL, Weller E, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002;100:3063–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Corral LG, Muller GW, Moreira AL, et al. Selection of novel analogs of thalidomide with enhanced tumor necrosis factor alpha inhibitory activity. Mol Med. 1996;2:506–15.PubMedGoogle Scholar
  14. 14.
    D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91:4082–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Kenyon BM, Browne F, D’Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res. 1997;64:971–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87:1166–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Teo SK, Stirling DI, Zeldis JB. Thalidomide as a novel therapeutic agent: new uses for an old product. Drug Discov Today. 2005;10:107–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Lentzsch S, Rogers MS, LeBlanc R, et al. S-3-Amino-phthalimido-glutarimide inhibits angiogenesis and growth of B-cell neoplasias in mice. Cancer Res. 2002;62:2300–5.PubMedGoogle Scholar
  19. 19.
    Corral LG, Haslett PA, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 1999;163:380–6.PubMedGoogle Scholar
  20. 20.
    Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98:210–6.CrossRefPubMedGoogle Scholar
  21. 21.
    LeBlanc R, Hideshima T, Catley LP, et al. Immunomodulatory drug co stimulates T cells via the B7-CD28 pathway. Blood. 2004;103:1787–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Hayashi T, Hideshima T, Akiyama M, et al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood. 2003;102:1435–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Hideshima T, Anderson KC. Preclinical studies of novel targeted therapies. Hematol Oncol Clin North Am. 2007;21:1071–91. Viii–ix.CrossRefPubMedGoogle Scholar
  24. 24.
    Tai YT, Li XF, Catley L, et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005;65:11712–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer. 2002;2:927–37.CrossRefPubMedGoogle Scholar
  27. 27.
    Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC. Thalidomide and lenalidomide: mechanism-based potential drug combinations. Leuk Lymphoma. 2008;49:1238–45.CrossRefPubMedGoogle Scholar
  28. 28.
    Laubach JP, Mahindra A, Mitsiades CS, et al. The use of novel agents in the treatment of relapsed and refractory multiple myeloma. Leukemia. 2009.Google Scholar
  29. 29.
    Chauhan D, Anderson KC. Apoptosis in multiple myeloma: therapeutic implications. Apoptosis. 2001;6:47–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem. 1998;254:439–59.CrossRefPubMedGoogle Scholar
  31. 31.
    Mitsiades N, Mitsiades CS, Poulaki V, Anderson KC, Treon SP. Intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human multiple myeloma cells. Blood. 2002;99:2162–71.CrossRefPubMedGoogle Scholar
  32. 32.
    Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS. Role of NF-kappa B in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood. 1999;93:3044–52.PubMedGoogle Scholar
  33. 33.
    Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 2001;20:5991–6000.CrossRefPubMedGoogle Scholar
  34. 34.
    Chauhan D, Anderson KC. Apoptosis in multiple myeloma: therapeutic implications. Apoptosis. 2001;6:47–55.CrossRefPubMedGoogle Scholar
  35. 35.
    Hideshima T, Raje N, Richardson PG, Anderson KC. A review of lenalidomide in combination with dexamethasone for the treatment of multiple myeloma. Ther Clin Risk Manag. 2008;4:129–36.PubMedGoogle Scholar
  36. 36.
    Terpos E, Dimopoulos MA, Sezer O. The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma. Leukemia. 2007;21:1875–84.CrossRefPubMedGoogle Scholar
  37. 37.
    Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia. 2008;22:1925–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Giuliani N, Morandi F, Tagliaferri S, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood. 2007;110:334–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Raje N, Kumar S, Hideshima T, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004;104:4188–93.CrossRefPubMedGoogle Scholar
  40. 40.
    Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93:1658–67.PubMedGoogle Scholar
  41. 41.
    Landowski TH, Olashaw NE, Agrawal D, Dalton WS. Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene. 2003;22:2417–21.CrossRefPubMedGoogle Scholar
  42. 42.
    Lin YC, Shun CT, Wu MS, Chen CC. A novel anticancer effect of thalidomide: inhibition of intercellular adhesion molecule-1-mediated cell invasion and metastasis through suppression of nuclear factor-kappa B. Clin Cancer Res. 2006;12:7165–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Palumbo A, Bringhen S, Caravita T, et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet. 2006;367:825–31.CrossRefPubMedGoogle Scholar
  44. 44.
    Palumbo A, Falco P, Corradini P, et al. Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: a report from the GIMEMA–Italian Multiple Myeloma Network. J Clin Oncol. 2007;25:4459–65.CrossRefPubMedGoogle Scholar
  45. 45.
    Morgan GJ, Schey SA, Wu P, et al. Lenalidomide (Revlimid), in combination with cyclophosphamide and dexamethasone (RCD), is an effective and tolerated regimen for myeloma patients. Br J Haematol. 2007;137:268–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Thomas Reske
    • 1
    • 2
  • Mariateresa Fulciniti
    • 3
  • Nikhil C. Munshi
    • 1
    • 3
    Email author
  1. 1.VA Boston Healthcare SystemBostonUSA
  2. 2.Boston University Medical CenterBostonUSA
  3. 3.Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA

Personalised recommendations