Skip to main content

Advertisement

Log in

A meta-analysis of the NAT1 and NAT2 polymorphisms and prostate cancer: a huge review

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Studies revealing conflicting results on the role of NAT1 or NAT2 phenotypes on prostate cancer risk led us to perform a meta-analysis to investigate the association of these polymorphisms and prostate cancer risk. The meta-analysis included six studies with NAT1 genotyping (610 prostate cancer cases and 713 controls), and 10 studies with NAT2 genotyping (1,253 cases and 1,722 controls). The fixed effects odds ratio was 0.96 [95% confidence interval (95% CI): 0.75, 1.21; I 2 = 32.9%, P for heterogeneity = 0.189] for the NAT1 genotype, and the random effects odds ratio was 1.10 (95% CI: 0.87, 1.39; I 2 = 49.1%, P for heterogeneity = 0.039) for the NAT2 genotype. For NAT2 polymorphism, a statistically significant association between NAT2 polymorphism and prostate cancer appeared in Asians, but not in Caucasians. In conclusion, the NAT1 or NAT2 phenotypes detoxify carcinogens and their reactive intermediates are unlikely to be the cause of PCa development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Caporaso N, Goldstein A. Cancer genes: single and susceptibility: exposing the difference. Pharmacogenetics. 1995;5(2):59–63.

    Article  PubMed  CAS  Google Scholar 

  2. Blum M, Grant DM, McBride W, et al. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol. 1990;9(3):193–203.

    Article  PubMed  CAS  Google Scholar 

  3. Blum M, Demierre A, Grant DM, et al. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc Natl Acad Sci USA. 1991;88:5237–41.

    Article  PubMed  CAS  Google Scholar 

  4. Vatsis KP, Martell KJ, Weber WW. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc Natl Acad Sci USA. 1991;88:6333–7.

    Article  PubMed  CAS  Google Scholar 

  5. Ebisawa T, Deguchi T. Structure and restriction fragment length polymorphism of genes for human liver arylamine N-acetyltransferases. Biochem Biophys Res Commun. 1991;177:1252–7.

    Article  PubMed  CAS  Google Scholar 

  6. Costa S, Pinto D, Morais A, et al. Acetylation genotype and the genetic susceptibility to prostate cancer in a southern European population. Prostate. 2005;64:246–52.

    Article  PubMed  CAS  Google Scholar 

  7. Smith G, Stanley LA, Sim E, et al. Metabolic polymorphisms and cancer susceptibility. Cancer Surv. 1995;25:27–65.

    PubMed  CAS  Google Scholar 

  8. d’Errico A, Taioli E, Chen X. Genetic metabolic polymorphisms and the risk of cancer: a review of the literature. Biomarkers. 1996;1:149–73.

    Article  Google Scholar 

  9. Hein DW, Doll MA, Fretland AJ, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000;9:29–42.

    PubMed  CAS  Google Scholar 

  10. NAT2 Nomenclature [http://louisville.edu/medschool/pharmacology/NAT.html].

  11. Agundez JA, Martinez C, Olivera M, et al. Expression in human prostate of drug-and carcinogen-metabolizing enzymes: association with prostate cancer risk. Br J Cancer. 1998;78:1361–7.

    Article  PubMed  CAS  Google Scholar 

  12. Lawson T, Kolar C. Human prostate epithelial cells metabolize chemicals of dietary origin to mutagens. Cancer Lett. 2002;175:141–6.

    Article  PubMed  CAS  Google Scholar 

  13. Hein DW, Leff MA, Ishibe N, et al. Association of prostate cancer with rapid N-acetyltransferase 1 (NAT1*10) in combination with slow N-acetyltransferase 2 acetylator genotypes in a pilot case-control study. Environ Mol Mutagen. 2002;40(3):161–7.

    Article  PubMed  CAS  Google Scholar 

  14. Bruhn C, Brockmöller J, Cascorbi I, et al. Correlation between genotype and phenotype of the human arylamine N-acetyltransferase type 1 (NAT1). Biochem Pharmacol. 1999;58:1759–64.

    Article  PubMed  CAS  Google Scholar 

  15. Labuda D, Krajinovic M, Richer C, et al. Rapid detection of CYP1A1, CYP2D6 and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem. 1999;275:84–92.

    Article  PubMed  CAS  Google Scholar 

  16. Lo-Guidice JM, Allorge D, Chevalier D, et al. Molecular analysis of the N-acetyltransferase 1 gene (NAT1*) using polymerase chain reaction-restriction fragment-single strand conformation polymorphism assay. Pharmacogenetics. 2002;10:293–300.

    Article  Google Scholar 

  17. Smelt VA, Mardon HJ, Sim E. Placental expression of arylamine N-acetyltransferases: evidence for linkage disequilibrium between NAT1*10 and NAT2*4 alleles of the two human arylamine N-acetyltransferase loci NAT1 and NAT2. Pharmacol Toxicol. 1998;83:149–57.

    Article  PubMed  CAS  Google Scholar 

  18. Smelt VA, Upton A, Adjaye J, et al. Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos. Hum Mol Genet. 2000;9:1101–7.

    Article  PubMed  CAS  Google Scholar 

  19. Katoh T, Kaneko S, Boissy R, et al. A pilot study testing the association between N-acetyltransferase 1 and 2 and risk of oral squamous cell carcinoma in Japanese people. Carcinogenesis. 1998;19:1803–7.

    Article  PubMed  CAS  Google Scholar 

  20. Sekine A, Saito S, Iida A, et al. Identification of single-nucleotide polymorphisms (SNPs) of human N-acetyltransferase genes NAT1, NAT2, AANAT, ARD1 and L1CAM in the Japanese population. J Hum Genet. 2001;46:314–9.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao B, Lee E, Yeoh PN, et al. Detection of mutations and polymorphism of N-acetyltransferase 1 gene in Indian, Malay and Chinese populations. Pharmacogenetics. 1998;8:299–304.

    Article  PubMed  CAS  Google Scholar 

  22. Lin HJ, Probst-Hensch NM, Hughes NC, et al. Variants of N-acetyltransferase NAT1 and a case-control study of colorectal adenomas. Pharmacogenetics. 1998;8:269–81.

    Article  PubMed  CAS  Google Scholar 

  23. Upton A, Johnson N, Sandy J, et al. Arylamine N-acetyltransferases—of mice, men and microorganisms. Trends Pharmacol Sci. 2001;22:140–6.

    Article  PubMed  CAS  Google Scholar 

  24. Abe M, Deguchi T, Suzuki T. The structure and characterisation of a fourth allele of polymorphic N-acetyltransferase gene found in the Japanese population. Biochem Biophys Res Commun. 1993;191:811–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hickman D, Sim E. N-Acetyltransferase polymorphism: comparison of phenotype and genotype in humans. Biochem Pharmacol. 1991;42:1007–14.

    Article  PubMed  CAS  Google Scholar 

  26. Deguchi T. Sequences and expression of alleles of polymorphic arylamine N-acetyltransferase of human liver. J Biol Chem. 1992;267:18140–7.

    PubMed  CAS  Google Scholar 

  27. Deguchi T, Mashimo M, Suzuki T. Correlations between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J Biol Chem. 1990;265:12757–60.

    PubMed  CAS  Google Scholar 

  28. Sim E, Hickman D. Polymorphism in human N-acetyltransferase—the case of the missing allele. Trends Pharmacol Sci. 1991;12:211–3.

    Article  Google Scholar 

  29. Henning S, Cascorbi I, Münchow B, et al. Association of arylamine N-acetyltransferases NAT1 and NAT2 genotypes to laryngeal cancer risk. Pharmacogenetics. 1999;9:103–11.

    Article  PubMed  CAS  Google Scholar 

  30. Westphal GA, Reich K, Schultz TG, et al. N-Acetyltransferase 1 and 2 polymorphisms in para-substituted arylamine-induced contact allergy. Br J Dermatol. 2000;142:1121–7.

    Article  PubMed  CAS  Google Scholar 

  31. Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10–30.

    Article  PubMed  Google Scholar 

  32. Garcia M, Jemal A, Ward E, et al. Global cancer facts and figures 2007. Available from: http://www.cancer.org/downloads/STT/Global_Cancer_Facts_and_Figures_2007_rev.pdf. Accessed May 23, 2008.

  33. Klein EA, Thompson IM. Update on chemoprevention of prostate cancer. Curr Opin Urol. 2004;14:143–9.

    Article  PubMed  Google Scholar 

  34. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  35. Boyle P, Severi G, Giles GG. The epidemiology of prostate cancer. Urol Clin North Am. 2003;30:209–17.

    Article  PubMed  Google Scholar 

  36. Yin M, Bastacky S, Chandran U, et al. Prevalence of incidental prostate cancer in the general population: a study of healthy organ donors. J Urol. 2008;179:892–5.

    Article  PubMed  Google Scholar 

  37. Wang CY, Debiec-Rychter M, Schut HA, et al. N-Acetyltransferase expression and DNA binding of N-hydroxyheterocyclic amines in human prostate epithelium. Carcinogenesis. 1999;20:1591–5.

    Article  PubMed  CAS  Google Scholar 

  38. Hein DW, Grant DM, Sim E. Update on consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenetics. 2000;10(4):291–2.

    Article  PubMed  CAS  Google Scholar 

  39. Beebe-Dimmer JL, Levin AM, Ray AM, et al. Chromosome 8q24 markers: risk of early-onset and familial prostate cancer. Int J Cancer. 2008;122(12):2876–9.

    Article  PubMed  CAS  Google Scholar 

  40. Slattery ML, Edwards SL, Samowitz W, et al. Associations between family history of cancer and genes coding for metabolizing enzymes (United States). Cancer Causes Control. 2000;11(9):799–803.

    Article  PubMed  CAS  Google Scholar 

  41. Agúndez JA. Polymorphisms of human N-acetyltransferases and cancer risk. Curr Drug Metab. 2008;9(6):520–31.

    Article  PubMed  Google Scholar 

  42. Dalhoff K, Buus Jensen K, Enghusen Poulsen H. Cancer and molecular biomarkers of phase 2. Methods Enzymol. 2005;400:618–27.

    Article  PubMed  CAS  Google Scholar 

  43. Reszka E, Wasowicz W. Genetic polymorphism of N-acetyltransferase and glutathione S-transferase related to neoplasm of genitourinary system. Minirev Neoplasma. 2002;49(4):209–16.

    CAS  Google Scholar 

  44. Kinoshita Y, Singh A, Rovito PM Jr, et al. Double primary cancers of the prostate and bladder: a literature review. Clin Prostate Cancer. 2004;3(2):83–6.

    PubMed  Google Scholar 

  45. Hooker S, Bonilla C, Akereyeni F, et al. NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis. 2008;11(4):349–56.

    Article  PubMed  CAS  Google Scholar 

  46. Rovito PM Jr, Morse PD, Spinek K, et al. Heterocyclic amines and genotype of N-acetyltransferases as risk factors for prostate cancer. Prostate Cancer Prostatic Dis. 2005;8(1):69–74.

    Article  PubMed  CAS  Google Scholar 

  47. Wang CY, Jones RF, Debiec-Rychter M, et al. Correlation of the genotypes for N-acetyltransferases 1 and 2 with double bladder and prostate cancers in a case-comparison study. Anticancer Res. 2002;22(6B):3529–35.

    PubMed  CAS  Google Scholar 

  48. Wadelius M, Autrup JL, Stubbins MJ, et al. Polymorphisms in NAT2, CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer. Pharmacogenetics. 1999;9(3):333–40.

    Article  PubMed  CAS  Google Scholar 

  49. Srivastava DS, Mittal RD. Genetic polymorphism of the N-acetyltransferase 2 gene, and susceptibility to prostate cancer: a pilot study in north Indian population. BMC Urol. 2005;5:12.

    Article  PubMed  Google Scholar 

  50. Gao JP, Huang YD, Yang GZ, et al. Relationship between genetic polymorphisms of metabolizing enzymes and prostate cancer. Zhonghua Nan Ke Xue. 2003;9(1):32–5.

    PubMed  CAS  Google Scholar 

  51. Hamasaki T, Inatomi H, Katoh T, et al. N-Acetyltransferase-2 gene polymorphism as a possible biomarker for prostate cancer in Japanese men. Int J Urol. 2003;10(3):167–73.

    Article  PubMed  CAS  Google Scholar 

  52. Fukutome K, Watanabe M, Shiraishi T, et al. N-Acetyltransferase 1 genetic polymorphism influences the risk of prostate cancer development. Cancer Lett. 1999;136(1):83–7.

    Article  PubMed  CAS  Google Scholar 

  53. Iguchi T, Sugita S, Wang CY, et al. MnSOD genotype and prostate cancer risk as a function of NAT genotype and smoking status. In Vivo. 2009;23(1):7–12.

    PubMed  CAS  Google Scholar 

  54. Blettner M, Sauerbrei W, Schlehofer B, et al. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol. 1999;28:1–9.

    Article  PubMed  CAS  Google Scholar 

  55. Slager SL, Zarfas KE, Brown WM, et al. Genome-wide linkage scan for prostate cancer aggressiveness loci using families from the University of Michigan Prostate Cancer Genetics Project. Prostate. 2006;66:173–9.

    Article  PubMed  CAS  Google Scholar 

  56. Xu J, Gillanders EM, Isaacs SD, et al. Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate. 2003;57:320–5.

    Article  PubMed  CAS  Google Scholar 

  57. Wiklund F, Gillanders EM, Albertus JA, et al. Genome-wide scan of Swedish families with hereditary prostate cancer: suggestive evidence of linkage at 5q11.2 and 19p13.3. Prostate. 2003;57:290–7.

    Article  PubMed  CAS  Google Scholar 

  58. Edwards S, Meitz J, Eles R, et al. Results of a genome-wide linkage analysis in prostate cancer families ascertained through the ACTANE consortium. Prostate. 2003;57:270–9.

    Article  PubMed  Google Scholar 

  59. Stanford JL, Fitzgerald LM, McDonnell SK, et al. Dense genome-wide SNP linkage scan in 301 hereditary prostate cancer families identifies multiple regions with suggestive evidence for linkage. Hum Mol Genet. 2009;18(10):1839–48.

    Article  PubMed  CAS  Google Scholar 

  60. Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39:645–9.

    Article  PubMed  CAS  Google Scholar 

  61. Gudmundsson J, Sulem P, Manolescu A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet. 2007;39:631–7.

    Article  PubMed  CAS  Google Scholar 

  62. Eeles RA, Kote-Jarai J, Giles GG, et al. Identification of multiple novel prostate cancer susceptibility loci by a genome-wide association study. Nat Genet. 2008;40:316–21.

    Article  PubMed  CAS  Google Scholar 

  63. Thomas G, Jacobs KB, Yeager M, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 2008;40:310–5.

    Article  PubMed  CAS  Google Scholar 

  64. Ries L, Melbert D, Drapcho M, et al. SEER cancer statistics review (based on November 2007 SEER data submission, posted to the SEER Web site, 2008). Available from: http://seer.cancer.gov/csr/1975_2005/. Accessed 30 May, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfei Cao, Feng Gao or Zengnan Mo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, C., Hu, X., Gao, Y. et al. A meta-analysis of the NAT1 and NAT2 polymorphisms and prostate cancer: a huge review. Med Oncol 28, 365–376 (2011). https://doi.org/10.1007/s12032-010-9423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9423-5

Keywords

Navigation