Skip to main content

Advertisement

Log in

Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Multidrug resistance remains a major clinical obstacle to successful treatment of breast cancer and leads to poor prognosis for the patients. Recently studies have shown that microRNAs play an important role in breast cancer cell resistance to chemotherapeutic agents. In this study, microRNA expression profiles of MCF-7/AdrVp and MCF-7 were analyzed using microarray and the results were confirmed by real-time RT-polymerase chain reaction. Gene Ontology (GO) and pathways mapping tools were employed to analyse systemically the biological processes and signaling pathways affected by differential expression microRNAs. Here, we showed that 181 human microRNAs were differentially expressed between two cell lines. Compared to MCF-7 cells, there were 16 microRNAs down-regulated and 165 microRNAs up-regulated in MCF-7/AdrVp. Western blot confirmed the correlation between specific microRNA expression and corresponding changes in protein levels of their targets, specifically those that have a documented role in cancer drug resistance. Furthermore, we validated that signaling pathway highlighted in the study was involved in drug resistance. These results indicated that breast cancer cell resistant to chemotherapy was associated with a group of microRNAs. GO and pathway mapping are valid and effective approach to analyse the function of microRNAs and the results could be a guideline for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat. 2007;10(1–2):59–67. doi:10.1016/j.drup.2007.02.002.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. doi:10.1016/S0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  3. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73. doi:10.1038/nature03315.

    Article  CAS  PubMed  Google Scholar 

  4. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122(1):6–7. doi:10.1016/j.cell.2005.06.036.

    Article  CAS  PubMed  Google Scholar 

  5. O’Rourke JR, Swanson MS, Harfe BD. MicroRNAs in mammalian development and tumorigenesis. Birth Defects Res C Embryo Today. 2006;78(2):172–9. doi:10.1002/bdrc.20071.

    Article  PubMed  Google Scholar 

  6. Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. doi:10.1016/j.ydbio.2006.08.028.

    Article  CAS  PubMed  Google Scholar 

  7. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66. doi:10.1038/nrc1997.

    Article  CAS  PubMed  Google Scholar 

  8. Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353(17):1768–71. doi:10.1056/NEJMp058190.

    Article  CAS  PubMed  Google Scholar 

  9. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799–803. doi:10.1038/sj.onc.1210083.

    Article  CAS  PubMed  Google Scholar 

  10. Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006;130(7):2113–29. doi:10.1053/j.gastro.2006.02.057.

    Article  CAS  PubMed  Google Scholar 

  11. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58. doi:10.1053/j.gastro.2007.05.022.

    Article  CAS  PubMed  Google Scholar 

  12. Blower PE, Chung JH, Verducci JS, et al. MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther. 2008;7(1):1–9. doi:10.1158/1535-7163.MCT-07-0573.

    Article  CAS  PubMed  Google Scholar 

  13. Weidhaas JB, Babar I, Nallur SM, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 2007;67(23):11111–6. doi:10.1158/0008-5472.CAN-07-2858.

    Article  CAS  PubMed  Google Scholar 

  14. Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res. 2007;56(3):248–53. doi:10.1016/j.phrs.2007.07.001.

    Article  CAS  PubMed  Google Scholar 

  15. Nakajima G, Hayashi K, Xi Y, et al. Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics. 2006;3(5):317–24.

    CAS  PubMed  Google Scholar 

  16. Chen YN, Mickley LA, Schwartz AM, et al. Characterization of doxorubicin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem. 1990;265(17):10073–80.

    CAS  PubMed  Google Scholar 

  17. Schmittgen TD, Lee EJ, Jiang J, et al. Real-time PCR quantification of precursor and mature microRNA. Methods. 2008;44(1):31–8. doi:10.1016/j.ymeth.2007.09.006.

    Article  CAS  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  19. Gusev Y. Computational methods for analysis of cellular functions and pathways collectively targeted by differentially expressed microRNA. Methods. 2008;44(1):61–72. doi:10.1016/j.ymeth.2007.10.005.

    Article  CAS  PubMed  Google Scholar 

  20. Huang da W, Sherman BT, Tan Q, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server issue):W169–75.

    Article  PubMed  Google Scholar 

  21. Draghici S, Khatri P, Tarca AL, et al. A systems biology approach for pathway level analysis. Genome Res. 2007;17(10):1537–45. doi:10.1101/gr.6202607.

    Article  CAS  PubMed  Google Scholar 

  22. Nam S, Kim B, Shin S, Lee S. miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res. 2008;36(Database issue):D159–64.

    CAS  PubMed  Google Scholar 

  23. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26(34):5017–22. doi:10.1038/sj.onc.1210293.

    Article  CAS  PubMed  Google Scholar 

  24. Takagi S, Nakajima M, Mohri T, Yokoi T. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem. 2008;283(15):9674–80. doi:10.1074/jbc.M709382200.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47. doi:10.1016/j.cell.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  26. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998;95(26):15665–70. doi:10.1073/pnas.95.26.15665.

    Article  CAS  PubMed  Google Scholar 

  27. Bandrés E, Cubedo E, Agirre X, et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;5:29. doi:10.1186/1476-4598-5-29.

    Article  PubMed  Google Scholar 

  28. Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem. 2007;282(4):2130–4. doi:10.1074/jbc.C600252200.

    Article  CAS  PubMed  Google Scholar 

  29. Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65(21):9628–32. doi:10.1158/0008-5472.CAN-05-2352.

    Article  CAS  PubMed  Google Scholar 

  30. Michael MZ, O’ Connor SM, van Holst Pellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12):882–91.

    CAS  PubMed  Google Scholar 

  31. Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. doi:10.1158/0008-5472.CAN-05-1783.

    Article  CAS  PubMed  Google Scholar 

  32. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–61. doi:10.1073/pnas.0510565103.

    Article  CAS  PubMed  Google Scholar 

  33. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007;21(5):1132–47. doi:10.1210/me.2007-0022.

    Article  CAS  PubMed  Google Scholar 

  34. Chédotal A, Kerjan G, Moreau-Fauvarque C. The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ. 2005;12(8):1044–56. doi:10.1038/sj.cdd.4401707.

    Article  PubMed  Google Scholar 

  35. Chédotal A. Chemotropic axon guidance molecules in tumorigenesis. Prog Exp Tumor Res. 2007;39:78–90. doi:10.1159/000100048.

    Article  PubMed  Google Scholar 

  36. Yoo YA, Kim YH, Kim JS, Seo JH. The functional implications of Akt activity and TGF-beta signaling in tamoxifen-resistant breast cancer. Biochim Biophys Acta. 2008;1783(3):438–47. doi:10.1016/j.bbamcr.2007.12.001.

    Article  CAS  PubMed  Google Scholar 

  37. Normanno N, Campiglio M, Maiello MR, et al. Breast cancer cells with acquired resistance to the EGFR tyrosine kinase inhibitor gefitinib show persistent activation of MAPK signaling. Breast Cancer Res Treat. 2008;112(1):25–33. doi:10.1007/s10549-007-9830-2.

    Article  CAS  PubMed  Google Scholar 

  38. Nahta R, Yuan LX, Zhang B, et al. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005;65(23):11118–28. doi:10.1158/0008-5472.CAN-04-3841.

    Article  CAS  PubMed  Google Scholar 

  39. Bender LM, Nahta R. Her2 cross talk and therapeutic resistance in breast cancer. Front Biosci. 2008;13:3906–12. doi:10.2741/2978.

    Article  CAS  PubMed  Google Scholar 

  40. Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94(1):15–21. doi:10.1111/j.1349-7006.2003.tb01345.x.

    Article  CAS  PubMed  Google Scholar 

  41. Wendel HG, Malina A, Zhao Z, et al. Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res. 2006;66(15):7639–46. doi:10.1158/0008-5472.CAN-06-0419.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Jun Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 414 kb)

Fig. S1

Display of targets gene of differential expressed microRNAs (shown in orange) in MCF-7/AdrVp and MCF-7 cells mapped on the axon guidance signaling pathway (A) and MAPK Signaling Pathway (B) (JPG 1808 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GQ., Zhao, ZW., Zhou, HY. et al. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol 27, 406–415 (2010). https://doi.org/10.1007/s12032-009-9225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-009-9225-9

Keywords

Navigation