Skip to main content

Advertisement

Log in

Identification of RKIP as a differentially tyrosine-phosphorylated protein in nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissues by phosphoproteomic approach

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Aims To screen for differentially tyrosine-phosphorylated proteins between nasopharyngeal carcinoma (NPC) and normal nasopharyngeal epithelial tissues (NNET) to provide a basis for elucidate the molecular mechanisms of NPC carcinogenesis. Methods Two-dimensional (2-D) electrophoresis was applied to separate proteins from NPC and NNET, respectively, and 2-D Western blotting was performed to detect tyrosine-phosphorylated proteins using antiphosphotyrosine antibody. Differentially tyrosine-phosphorylated proteins were identified by electrospray ionization-quadrupole time-of-flight MS (ESI-Q-TOF MS). NetPhos software was used to predict the tyrosine-phosphorylation sites of the identified proteins, and Western blotting was used to detect the tyrosine-phosphorylated levels of RKIP in NPC and NNET. Results Twenty-five differentially tyrosine-phosphorylated proteins in the two types of tissues were found, 13 of which were identified by ESI-Q-TOF MS. Among the 13 identified proteins, tyrosine-phosphorylated levels of 7 proteins were increased, and those of 6 proteins were decreased in NPC compared with NNET. NetPhos software prediction showed that all the 13 identified proteins contained tyrosine phosphorylation sites, and the differentially tyrosine-phosphorylated level of RKIP in NPC and NNET was confirmed. Conclusion The 13 differentially tyrosine-phosphorylated proteins may be involved in the development and progression of NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu MC. Nasopharyngeal carcinoma: epidemiology and dietary factors. IARC Sci Publ. 1991;105:39–47.

    PubMed  Google Scholar 

  2. Spano JP, Busson P, Atlan D, et al. Nasopharyngeal carcinomas: an update. Eur J Cancer. 2003;39(15):2121–35. doi:10.1016/S0959-8049(03)00367-8.

    Article  PubMed  Google Scholar 

  3. Fandi A, Altun M, Azli N, et al. Nasopharyngeal cancer: epidemiology, staging, and treatment. Semin Oncol. 1994;21(3):382–97.

    CAS  PubMed  Google Scholar 

  4. Dua K, Williams TM, Beretta L. Translational control of the proteome: relevance to cancer. Proteomics. 2001;1(10):1191–9. doi:10.1002/1615-9861(200110)1:10<1191::AID-PROT1191>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  5. Kovarova H, Hajduch M, Livingstone M, et al. Analysis of state-specific phosphorylation of proteins by two-dimensional gel electrophoresis approach. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;787(1):53–61. doi:10.1016/S1570-0232(02)00729-8.

    Article  CAS  PubMed  Google Scholar 

  6. Soskic V, Gorlach M, Poznanovic S, et al. Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor beta receptor. Biochemistry. 1999;38(6):1757–64. doi:10.1021/bi982093r.

    Article  CAS  PubMed  Google Scholar 

  7. Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc Lond B Biol Sci. 1998;353(1368):583–605. doi:10.1098/rstb.1998.0228.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng AL, Huang WG, Chen ZC, et al. Identificating Cathepsin D as a biomarker for differentiation and prognosis of nasopharyngeal carcinoma by laser capture microdissection and proteomic analysis. J Proteome Res. 2008;7(6):2415–26. doi:10.1021/pr7008548.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao ZQ, Chen Y, Yi B, et al. Identification of nasopharyngeal carcinoma antigens that induce humoral immune response by proteomic analysis. Proteomics Clin Appl. 2007;1(7):688–98. doi:10.1002/prca.200600561.

    Article  CAS  Google Scholar 

  10. Patarca R. Protein phosphorylation and dephosphorylation in physiologic and oncologic processes. Crit Rev Oncog. 1996;7(5–6):343–432.

    CAS  PubMed  Google Scholar 

  11. Pandey A, Podtelejnikov AV, Blagoev B, et al. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci U S A. 2000;97(1):179–84. doi:10.1073/pnas.97.1.179.

    Article  CAS  PubMed  Google Scholar 

  12. Gronborg M, Kristiansen TZ, Stensballe A, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics. 2002;1(7):517–27. doi:10.1074/mcp.M200010-MCP200.

    Article  CAS  PubMed  Google Scholar 

  13. Keller ET, Fu Z, Brennan M. The role of Raf kinase inhibitor protein (RKIP) in health and disease. Biochem Pharmacol. 2004;68(6):1049–53. doi:10.1016/j.bcp.2004.04.024.

    Article  CAS  PubMed  Google Scholar 

  14. Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature. 1999;401(6749):173–7. doi:10.1038/43686.

    Article  CAS  PubMed  Google Scholar 

  15. Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature. 2003;426(6966):574–9. doi:10.1038/nature02158.

    Article  CAS  PubMed  Google Scholar 

  16. Yeung KC, Rose DW, Dhillon AS, et al. Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol. 2001;21(21):7207–17. doi:10.1128/MCB.21.21.7207-7217.2001.

    Article  CAS  PubMed  Google Scholar 

  17. Granovsky AE, Rosner MR. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell Res. 2008;18(4):452–7. doi:10.1038/cr.2008.43.

    Article  CAS  PubMed  Google Scholar 

  18. Hendrix MJ, Seftor EA, Chu YW, et al. Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential. J Natl Cancer Inst. 1992;84(3):165–74. doi:10.1093/jnci/84.3.165.

    Article  CAS  PubMed  Google Scholar 

  19. Ozeki M, Tamae D, Hou DX, et al. Response of cyclin B1 to ionizing radiation: regulation by NF-kappaB and mitochondrial antioxidant enzyme MnSOD. Anticancer Res. 2004;24(5A):2657–63.

    CAS  PubMed  Google Scholar 

  20. Venkataraman S, Jiang X, Weydert C, et al. Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene. 2005;24(1):77–89. doi:10.1038/sj.onc.1208145.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from National Key Basic Research Program of China (2001CB510207), Outstanding Scholars of New Era from Ministry of Education of China (2002-48), Lotus Scholars Program of Hunan Province, China (2007-362), and key research program from Science and Technology Committee of Hunan, China (04XK1001-1, 05SK1004-1, 06SK2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Xiao.

Additional information

Y. Chen and C.-E. Tang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Tang, CE., Ouyang, GL. et al. Identification of RKIP as a differentially tyrosine-phosphorylated protein in nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissues by phosphoproteomic approach. Med Oncol 26, 463–470 (2009). https://doi.org/10.1007/s12032-008-9147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-008-9147-y

Keywords

Navigation