Advertisement

Medical Oncology

, 26:62 | Cite as

Insulin-like growth factor-1 is essential to the increased mortality caused by excess growth hormone: a case of thyroid cancer and non-Hodgkin’s lymphoma in a patient with pituitary acromegaly

  • A. Taslipinar
  • E. Bolu
  • L. KebapcilarEmail author
  • M. Sahin
  • G. Uckaya
  • M. Kutlu
Original Paper

Abstract

The effects of growth hormone are mediated in part by stimulating the production of insulin-like growth factor-1. Insulin-like growth factor-1 has significant effects on cell proliferation and differentiation, it is a potent mitogen, and it is a powerful inhibitor of programmed cell death (apoptosis). Insulin-like growth factor-1 also has a well-established role in the transformation of normal cells to malignant cells. Case reports on a possible association between elevated growth hormone and cancer risk in a variety of patient groups have been published. Here, we describe clinical and laboratory findings for a patient with acromegaly who first developed thyroid cancer, and then, in the follow up period, probably due to poorly controlled insulin-like growth factor-1 levels, developed a large cell non-Hodgkin’s lymphoma. A search revealed that a case with these peculiarities had not previously been reported.

Keywords

Acromegaly Thyroid cancer Non-Hodgkin’s lymphoma IGF-I Growth hormone 

References

  1. 1.
    Barzilay J, Heatley GJ, Cushing GW. Benign and malignant tumors in patients with acromegaly. Arch Intern Med. 1991;151:1629–32. doi: 10.1001/archinte.151.8.1629.PubMedCrossRefGoogle Scholar
  2. 2.
    Jenkins PJ, Besser M. Clinical perspective: acromegaly and cancer: a problem. J Clin Endocrinol Metab. 2001;86:2935–41. doi: 10.1210/jc.86.7.2935.PubMedCrossRefGoogle Scholar
  3. 3.
    Prisco M, Romano G, Peruzzi F, Valentinis P, Baserga R. Insulin and IGF-I receptors signaling in protection from apoptosis. Horm Metab Res. 1999;31:80–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Siegel G, Tomer Y. Is there an association between acromegaly and thyroid carcinoma? A critical review of the literature. Endocr Res. 2005;31:51–8. doi: 10.1080/07435800500229177.PubMedCrossRefGoogle Scholar
  5. 5.
    Alves RH, Vaisman M, Brasil RR, Gadelha MR. Acromegaly and non-Hodgkin’s lymphoma. Endocr Pract. 1998;4:279–81.PubMedGoogle Scholar
  6. 6.
    Busygina V, Bale AE. Multiple endocrine neoplasia type 1 (MEN1) as a cancer predisposition syndrome: clues into the mechanisms of MEN1-related carcinogenesis. Yale J Biol Med. 2006;79:105–14.PubMedGoogle Scholar
  7. 7.
    Hennessey JV, Jackson IM. Clinical features and differential diagnosis of pituitary tumours with emphasis on acromegaly. Baillieres Clin Endocrinol Metab. 1995;9:271–314. doi: 10.1016/S0950-351X(95)80338-6.PubMedCrossRefGoogle Scholar
  8. 8.
    Cordero RA, Barkan AL. Current diagnosis of acromegaly. Rev Endocr Metab Disord. 2008;9:13–9. doi: 10.1007/s11154-007-9060-2.PubMedCrossRefGoogle Scholar
  9. 9.
    AACE Acromegaly Guidelines Task Force. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly. Endocr Pract. 2004;10:213–25.Google Scholar
  10. 10.
    Ezzat S, Melmed S. Clinical review 18: are patients with acromegaly at increased risk for neoplasia? J Clin Endocrinol Metab. 1991;72:245–9.PubMedGoogle Scholar
  11. 11.
    Loeper S, Ezzat S. Acromegaly: re-thinking the cancer risk. Rev Endocr Metab Disord. 2008;9:41–58. doi: 10.1007/s11154-007-9063-z.PubMedCrossRefGoogle Scholar
  12. 12.
    Wright AD, Hill DM, Lowy C, Fraser TR. Mortality in acromegaly. Q J Med. 1970;39:1–16.PubMedGoogle Scholar
  13. 13.
    Bengtsson BA, Eden S, Ernest I, Oden A, Sjogren B. Epidemiology and long-term survival in acromegaly. A study of 166 cases diagnosed between 1955 and 1984. Acta Med Scand. 1988;223:327–35.PubMedGoogle Scholar
  14. 14.
    Etxabe J, Gaztambide P, Latorre P, Vazquez JA. Acromegaly: an epidemiological study. J Endocrinol Invest. 1993;16:181–7.PubMedGoogle Scholar
  15. 15.
    Rajasoorya C, Holdaway IM, Wrightson P, Scott DJ, Ibbertson HK. Determinants of clinical outcome and survival in acromegaly. Clin Endocrinol (Oxf). 1994;41:95–102. doi: 10.1111/j.1365-2265.1994.tb03789.x.CrossRefGoogle Scholar
  16. 16.
    Swearingen B, et al. Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly. J Clin Endocrinol Metab. 1998;83:3419–26. doi: 10.1210/jc.83.10.3419.PubMedCrossRefGoogle Scholar
  17. 17.
    Orme SM, McNally RJ, Cartwright RA, Belchetz PE. Mortality and cancer incidence in acromegaly: a retrospective cohort study. United Kingdom Acromegaly Study Group. J Clin Endocrinol Metab. 1998;83:2730–4. doi: 10.1210/jc.83.8.2730.PubMedCrossRefGoogle Scholar
  18. 18.
    Beauregard C, Truong U, Hardy J, Serri O. Long-term outcome and mortality after transsphenoidal adenomectomy for acromegaly. Clin Endocrinol (Oxf). 2003;58:86–91. doi: 10.1046/j.1365-2265.2003.01679.x.CrossRefGoogle Scholar
  19. 19.
    Holdaway IM, Rajasoorya RC, Gamble GD. Factors influencing mortality in acromegaly. J Clin Endocrinol Metab. 2004;89:667–74. doi: 10.1210/jc.2003-031199.PubMedCrossRefGoogle Scholar
  20. 20.
    Kurimoto M, Fukuda I, Hizuka N, Takano K. The prevalence of benign and malignant tumors in patients with acromegaly at a single institute. Endocr J. 2008;55:67–71. doi: 10.1507/endocrj.K07E-010.PubMedCrossRefGoogle Scholar
  21. 21.
    Kasagi K, et al. Goiter associated with acromegaly: sonographic and scintigraphic findings of the thyroid gland. Thyroid. 1999;9:791–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Cannavò S, et al. Goiter and impairment of thyroid function in acromegalic patients: basal evaluation and follow-up. Horm Metab Res. 2000;32:190–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Gasperi M, et al. Acromegaly Study Group of the Italian Society of Endocrinology. Prevalence of thyroid diseases in patients with acromegaly: results of an Italian multi-center study. J Endocrinol Invest. 2002;25:240–5.PubMedGoogle Scholar
  24. 24.
    Tita P, et al. High prevalence of differentiated thyroid carcinoma in acromegaly. Clin Endocrinol (Oxf). 2005;63:161–7. doi: 10.1111/j.1365-2265.2005.02316.x.CrossRefGoogle Scholar
  25. 25.
    Cats A, et al. Increased epithelial cell proliferation in the colon of patients with acromegaly. Cancer Res. 1996;56:523–6.PubMedGoogle Scholar
  26. 26.
    Jenkins PJ, et al. Insulin-like growth factor I and the development of colorectal neoplasia in acromegaly. J Clin Endocrinol Metab. 2000;85:3218–21. doi: 10.1210/jc.85.9.3218.PubMedCrossRefGoogle Scholar
  27. 27.
    Onoda N, et al. Autocrine role of insulin-like growth factor (IGF)-I in a human thyroid cancer cell line. Eur J Cancer. 1992;28A:1904–9. doi: 10.1016/0959-8049(92)90033-X.PubMedCrossRefGoogle Scholar
  28. 28.
    Roger P, Taton M, Van Sande J, Dumont JE. Mitogenic effects of thyrotropin and adenosine 3′,5′-monophosphate in differentiated normal human thyroid cells in vitro. J Clin Endocrinol Metab. 1988;66:1158–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Minuto F, et al. Immunoreactive insulin-like growth factor I (IGF-I) and IGF-I-binding protein content in human thyroid tissue. J Clin Endocrinol Metab. 1989;68:621–6.PubMedGoogle Scholar
  30. 30.
    Wolk A. The growth hormone and insulin-like growth factor I axis, and cancer. Lancet. 2004;363:1336–7. doi: 10.1016/S0140-6736(04)16081-9.PubMedCrossRefGoogle Scholar
  31. 31.
    Selvarajah D, Webster J, Ross R, Newell-Price J. Effectiveness of adding dopamine agonist therapy to long-acting somatostatin analogues in the management of acromegaly. Eur J Endocrinol. 2005;152:569–74. doi: 10.1530/eje.1.01888.PubMedCrossRefGoogle Scholar
  32. 32.
    Marzullo P, et al. Efficacy of combined treatment with lanreotide and cabergoline in selected therapy-resistant acromegalic patients. Pituitary. 1999;1:115–20. doi: 10.1023/A:1009932521242.PubMedCrossRefGoogle Scholar
  33. 33.
    Colao A, et al. Pegvisomant in acromegaly: why, when, how. J Endocrinol Invest. 2007;30:693–9.PubMedGoogle Scholar
  34. 34.
    Wang X, Stocco DM. The decline in testosterone biosynthesis during male aging: a consequence of multiple alterations. Mol Cell Endocrinol. 2005;238:1–7. doi: 10.1016/j.mce.2005.04.009.PubMedCrossRefGoogle Scholar
  35. 35.
    Tenover JS. Declining testicular function in aging men. Int J Impot Res. 2003;15:3–8. doi: 10.1038/sj.ijir.3901029.CrossRefGoogle Scholar
  36. 36.
    Leung DW, et al. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature. 1987;330:537–43. doi: 10.1038/330537a0.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu H, Devi R, Malarkey WB. Localization of growth hormone messenger ribonucleic acid in the human immune system—a Clinical Research Center study. J Clin Endocrinol Metab. 1996;81:1278–82. doi: 10.1210/jc.81.3.1278.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • A. Taslipinar
    • 1
  • E. Bolu
    • 1
  • L. Kebapcilar
    • 1
    Email author
  • M. Sahin
    • 1
  • G. Uckaya
    • 1
  • M. Kutlu
    • 1
  1. 1.Department of Internal Medicine, Division of Endocrinology and MetabolismGulhane Military Medical FacultyAnkaraTurkey

Personalised recommendations