Skip to main content
Log in

Nitric Oxide Synthase Inhibition Prevents Cell Proliferation in Glioblastoma

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is a prevalent and aggressive primary brain tumor, presenting substantial treatment challenges and high relapse rates. GBM is characterized by alterations in molecular signaling and enzyme expression within malignant cells. This tumor exhibits elevated nitric oxide (NO.) levels. NO. is a crucial signaling molecule involved in the regulation of neuronal functions, synaptic transmission, and cell proliferation. It is primarily synthesized from L-arginine by nitric oxide synthase (NOS) enzymes. The increased levels of NO. in GBM stem from dysregulated activity and expression of clinically relevant NOS isoforms, particularly inducible NOS (iNOS) and neuronal NOS (nNOS). Based on this knowledge, we hypothesize that targeted pharmacological intervention with N6-(1-iminoethyl)-L-lysine (L-NIL), an iNOS inhibitor, and 7-Nitroindazole (7-NI), an nNOS inhibitor, may suggest a promising therapeutic strategy for the treatment of GBM. To test our hypothesis, we utilized the U87-MG cell line as an in vitro model of GBM. Our results showed that treatment with L-NIL and 7-NI led to a reduction in NO. levels, NOS activity, and clonogenic proliferation in U87-MG cells. These findings suggest that NO. and NOS enzymes might be prospective therapeutic targets for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

N/A.

References

  • Abdel-Haq M et al (2023) Effects of extended-release 7-nitroindazole gel formulation treatment on the behavior of shank3 mouse model of autism. Nitric Oxide

  • Alexander BM, Cloughesy TF (2017) Adult glioblastoma. J Clin Oncol 35(21):2402–2409

    Article  PubMed  Google Scholar 

  • Amal H (2022) Sex and the brain: novel ADNP syndrome mice are protected by NAP. Biol Psychiatry 92(1):8–9

    Article  PubMed  Google Scholar 

  • Amal H et al (2019) S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry 9(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  • Amal H et al (2020) Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Mol Psychiatry 25(8):1835–1848

    Article  PubMed  Google Scholar 

  • Amal H et al (2020) Low doses of arsenic in a mouse model of human exposure and in neuronal culture lead to S-nitrosylation of synaptic proteins and apoptosis via nitric oxide. Int J Mol Sci 21(11)

  • Badn W, Siesjö P (2010) The dual role of nitric oxide in glioma. Curr Pharm Des 16(4):428–430

    Article  PubMed  Google Scholar 

  • Biserova K et al (2021) Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma. Cells 10(3)

  • Broholm H et al (2003) Nitric oxide synthase expression and enzymatic activity in human brain tumors. Clin Neuropathol 22(6):273–281

    PubMed  Google Scholar 

  • Chachlaki K, Prevot V (2020) Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 177(24):5437–5458

    Article  PubMed  Google Scholar 

  • Chen R et al (2017) Glioma subclassifications and their clinical significance. Neurotherapeutics 14(2):284–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2023) A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat Commun 14(1):941

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobbs CS et al (1995) Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res 55(4):727–730

    PubMed  Google Scholar 

  • Eyler CE et al (2011) Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 146(1):53–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahey JM, Korytowski W, Girotti AW (2019) Upstream signaling events leading to elevated production of pro-survival nitric oxide in photodynamically-challenged glioblastoma cells. Free Radic Biol Med 137:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahey JM and Girotti AW (2019) Nitric oxide antagonism to anti-glioblastoma photodynamic therapy: mitigation by inhibitors of nitric oxide generation. Cancers (Basel) 11(2)

  • Gately L et al (2016) Age alone is not a predictor for survival in glioblastoma. J Neurooncol 129(3):479–485

    Article  PubMed  Google Scholar 

  • Hamoudi W et al (2021) Regional differences in S-nitrosylation in the cortex, striatum, and hippocampus of juvenile male mice. J Mol Neurosci 71(11):2383–2392

    Article  PubMed  Google Scholar 

  • Hamoudi W et al (2022) A cross-talk between nitric oxide and the glutamatergic system in a Shank3 mouse model of autism. Free Radic Biol Med 188:83–91

    Article  PubMed  Google Scholar 

  • Hassn Mesrati M et al (2020) Understanding glioblastoma biomarkers: knocking a mountain with a hammer. Cells 9(5)

  • Jain S, Chalif EJ, Aghi MK (2021) Interactions between anti-angiogenic therapy and immunotherapy in glioblastoma. Front Oncol 11:812916

    Article  PubMed  Google Scholar 

  • Jin L et al (2018) CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol 20(1):55–65

    Article  PubMed  Google Scholar 

  • Kannan MS, Guiang S, Johnson DE (1998) Nitric oxide: biological role and clinical uses. Indian J Pediatr 65(3):333–345

    Article  PubMed  Google Scholar 

  • Kartawy M, Khaliulin I, Amal H (2020) Systems biology reveals reprogramming of the S-nitroso-proteome in the cortical and striatal regions of mice during aging process. Sci Rep 10(1):13913

    Article  PubMed  PubMed Central  Google Scholar 

  • Kartawy M Khaliulin I and Amal H (2021) Systems biology reveals s-nitrosylation-dependent regulation of mitochondrial functions in mice with shank3 mutation associated with autism spectrum disorder. Brain Sci 11(6)

  • Kerschbaum HH et al (2000) NADPH-diaphorase activity and nitric oxide synthase activity in the kidney of the clawed frog. Xenopus Laevis Cell Tissue Res 301(3):405–411

    Article  PubMed  Google Scholar 

  • Khaliulin I, Kartawy M and Amal H (2020) Sex differences in biological processes and nitrergic signaling in mouse brain. Biomedicines 8(5)

  • Khaliulin I et al (2021) Preconditioning or postconditioning with 8-Br-cAMP-AM protects the heart against regional ischemia and reperfusion: a role for mitochondrial permeability transition. Cells 10(5)

  • Kielbik M, Szulc-Kielbik I and Klink M (2019) The potential role of iNOS in ovarian cancer progression and chemoresistance. Int J Mol Sci 20(7)

  • Kostourou V et al (2011) The role of tumour-derived iNOS in tumour progression and angiogenesis. Br J Cancer 104(1):83–90

    Article  PubMed  Google Scholar 

  • Lam-Himlin D et al (2006) Malignant glioma progression and nitric oxide. Neurochem Int 49(8):764–768

    Article  PubMed  Google Scholar 

  • Le Rhun E et al (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896

    Article  PubMed  Google Scholar 

  • Lens SM et al (1996) Phenotype and function of human B cells expressing CD70 (CD27 ligand). Eur J Immunol 26(12):2964–2971

    Article  PubMed  Google Scholar 

  • Lisi L et al (2017) Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci Lett 645:106–112

    Article  PubMed  Google Scholar 

  • Liu X et al (2021) Protein phosphorylation in cancer: role of nitric oxide signaling pathway. Biomolecules 11(7)

  • López-Collazo E et al (1997) Requirement of nitric oxide and calcium mobilization for the induction of apoptosis in adrenal vascular endothelial cells. FEBS Lett 413(1):124–128

    Article  PubMed  Google Scholar 

  • Luo C et al (2021) The prognosis of glioblastoma: a large, multifactorial study. Br J Neurosurg 35(5):555–561

    Article  PubMed  Google Scholar 

  • Ma Y et al (2021) Advanced immunotherapy approaches for glioblastoma. Advanced Therapeutics 4(8)

  • Maccallini C et al (2020) Targeting iNOS As a valuable strategy for the therapy of glioma. ChemMedChem 15(4):339–344

    Article  PubMed  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  PubMed  Google Scholar 

  • Mazurek M, Rola R (2021) The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 150:105172

    Article  PubMed  Google Scholar 

  • McKinnon C et al (2021) Glioblastoma: clinical presentation, diagnosis, and management. BMJ 374:n1560

    Article  PubMed  Google Scholar 

  • Mencer S et al (2021) Proteomics of autism and Alzheimer’s mouse models reveal common alterations in mTOR signaling pathway. Transl Psychiatry 11(1):480

    Article  PubMed  PubMed Central  Google Scholar 

  • Merenzon MA et al (2023) Nitric oxide synthase inhibitors as potential therapeutic agents for gliomas: a systematic review. Nitric Oxide

  • Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850

    Article  PubMed  Google Scholar 

  • Ostrom QT et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(4):iv1–63

  • Perry A, Wesseling P (2016) Histologic classification of gliomas. Handb Clin Neurol 134:71–95

    Article  PubMed  Google Scholar 

  • Pratt D et al (2017) Expression of CD70 (CD27L) is associated with epithelioid and sarcomatous features in IDH-wild-type glioblastoma. J Neuropathol Exp Neurol 76(8):697–708

    Article  PubMed  PubMed Central  Google Scholar 

  • Puram SV et al (2012) STAT3-iNOS signaling mediates EGFRvIII-induced glial proliferation and transformation. J Neurosci 32(23):7806–7818

    Article  PubMed  PubMed Central  Google Scholar 

  • Rong L, Li N, Zhang Z (2022) Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res 41(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmonds MJ, Detterich JA, Connes P (2014) Nitric oxide, vasodilation and the red blood cell. Biorheology 51(2–3):121–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinert JR, Amal H (2023) The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 194:71–83

    Article  PubMed  Google Scholar 

  • Tan AC et al (2020) Management of glioblastoma: state of the art and future directions. CA Cancer J Clin 70(4):299–312

    Article  PubMed  Google Scholar 

  • Tanriover N et al (2008) Neuronal nitric oxide synthase expression in glial tumors: correlation with malignancy and tumor proliferation. Neurol Res 30(9):940–944

    Article  PubMed  Google Scholar 

  • Tran AN et al (2017) NOS expression and NO function in glioma and implications for patient therapies. Antioxid Redox Signal 26(17):986–999

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi MK, Kartawy M, Amal H (2020) The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 34:101567

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi MK et al (2022) Arsenic alters nitric oxide signaling similar to autism spectrum disorder and Alzheimer’s disease-associated mutations. Transl Psychiatry 12(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi MK et al (2023) The NO answer for autism spectrum disorder. Adv Sci (weinh) 10(22):e2205783

    Article  PubMed  Google Scholar 

  • Wann A et al (2018) Outcomes after second surgery for recurrent glioblastoma: a retrospective case-control study. J Neurooncol 137(2):409–415

    Article  PubMed  Google Scholar 

  • Weller M et al (2015) Glioma Nat Rev Dis Primers 1:15017

    Article  PubMed  Google Scholar 

  • Wick W et al (2017) Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 377(20):1954–1963

    Article  PubMed  Google Scholar 

  • Wirsching HG, Galanis E, Weller M (2016) Glioblastoma. Handb Clin Neurol 134:381–397

    Article  PubMed  Google Scholar 

  • Wu W et al (2021) Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res 171:105780

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H et al (2022) Mechanistic insight into female predominance in Alzheimer’s disease based on aberrant protein S-nitrosylation of C3. Sci Adv 8(50):eade0764

  • Zhu LJ, Li F and Zhu DY (2023) nNOS and neurological, neuropsychiatric disorders: a 20-year story. Neurosci Bull 1–15

Download references

Funding

This work was funded by an Israeli Science Foundation (ISF) grant, an Eagles Autism Foundation grant, a National Institute of Psychobiology in Israel (NIPI) grant, an Israeli Council for Higher Education Maof grant, and a Berettler Centre for Research in Molecular Pharmacology and Therapeutics grant. The authors also thank the Satell Family and the Neubauer Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

DK: conducted experiments, manuscript preparation SKO: conducted experiments MK conducted experiments MKT: conducted experiments, manuscript preparation WH: conducted experiments WB: conducted experiments IG: manuscript preparation HA: project supervision, manuscript preparationAll authors reviewed the manuscript.

Corresponding author

Correspondence to Haitham Amal.

Ethics declarations

Ethical Approval

All animals used were approved by the University Ethical Committee.

Informed Consent

N/A

Competing interests

The research was partially funded by an American Pharma Company under the terms of a Research and License agreement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglyakov, D., Ojha, S.K., Kartawy, M. et al. Nitric Oxide Synthase Inhibition Prevents Cell Proliferation in Glioblastoma. J Mol Neurosci 73, 875–883 (2023). https://doi.org/10.1007/s12031-023-02166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-023-02166-3

Keywords

Navigation