Skip to main content
Log in

Differential Expression of MicroRNAs and Predicted Drug Target in Amyotrophic Lateral Sclerosis

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

ALS (Amyotrophic Lateral Sclerosis) is a rare type of neurodegenerative disease. It shows progressive degradation of motor neurons in the brain and spinal cord. At present, there is no treatment available that can completely cure ALS. The available treatments can only increase a patient’s life span by a few months. Recently, microRNAs (miRNAs), a sub-class of small non-coding RNAs have been shown to play an essential role in the diagnosis, prognosis, and therapy of ALS. Our study focuses on analyzing differential miRNA profiles and predicting drug targets in ALS using bioinformatics and computational approach. The study identifies eight highly differentially expressed miRNAs in ALS patients, four of which are novel. We identified 42 hub genes for these eight highly expressed miRNAs with Amyloid Precursor Protein (APP) as a candidate gene among them for highly expressed down-regulated miRNA, hsa-miR-455-3p using protein–protein interaction network and Cytoscape analysis. A novel association has been found between hsa-miR-455-3p/APP/serotonergic pathway using KEGG pathway analysis. Also, molecular docking studies have revealed curcumin as a potential drug target that may be used for the treatment of ALS. Thus, the present study has identified four novel miRNA biomarkers: hsa-miR-3613-5p, hsa-miR-24, hsa-miR-3064-5p, and hsa-miR-4455. There is a formation of a novel axis, hsa-miR-455-3p/APP/serotonergic pathway, and curcumin is predicted as a potential drug target for ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data is provided in supplementary files.

References

  • Abe K, Itoyama Y, Sobue G, Tsuji S, Aoki M, Doyu M, Edaravone ALS Study Group (2014) Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 15(7–8):610–617

    Article  CAS  PubMed  Google Scholar 

  • Active clinical trial studies (2023) Centers for Disease Control and Prevention. Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/als/ALSResearchNotificationClinicalTrialsStudies_Active.html (Accessed: 7 May 2023)

  • Ahmadi M, Agah E, Nafissi S, Jaafari MR, Harirchian MH, Sarraf P, Tafakhori A (2018) Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a pilot randomized clinical trial. Neurotherapeutics 15(2):430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9(11):617–628

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balendra R, Jones A, Jivraj N, Knights C, Ellis CM, Burman R, Al-Chalabi A (2014) Estimating clinical stage of amyotrophic lateral sclerosis from the ALS Functional Rating Scale. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 15(3–4):279–284

    Article  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonafede R, Mariotti R (2017) ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci 11:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Boylan K (2015) Familial amyotrophic lateral sclerosis. Neurol Clin 33(4):807–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown CA, Lally C, Kupelian V, Flanders WD (2021) Estimated prevalence and incidence of amyotrophic lateral sclerosis and SOD1 and C9orf72 genetic variants. Neuroepidemiology 55(5):342–353

    Article  PubMed  Google Scholar 

  • Bruneteau G, Simonet T, Bauché S, Mandjee N, Malfatti E, Girard E, Hantaï D (2013) Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. Brain 136(8):2359–2368

    Article  PubMed  Google Scholar 

  • Bryson JB, Hobbs C, Parsons MJ, Bosch KD, Pandraud A, Walsh FS, Greensmith L (2012) Amyloid precursor protein (APP) contributes to pathology in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 21(17):3871–3882

    Article  CAS  PubMed  Google Scholar 

  • Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E (2020) Antioxidant alternatives in the treatment of amyotrophic lateral sclerosis: a comprehensive review. Front Physiol 11:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho BS, Irizarry RA (2010) A framework for oligonucleotide microarray preprocessing. Bioinformatics 26(19):2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Monteiro MJ (2015) Defective proteasome delivery of polyubiquitinated proteins by ubiquilin-2 proteins containing ALS mutations. PLoS ONE 10(6):e0130162

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen JJ (2020) Overview of current and emerging therapies for amytrophic lateral sclerosis. Am J Manag Care 26(9 Suppl):S191–S197

    PubMed  Google Scholar 

  • Chico L, Ienco EC, Bisordi C, Lo Gerfo A, Petrozzi L, Petrucci A, Siciliano G (2018) Amyotrophic lateral sclerosis and oxidative stress: a double-blind therapeutic trial after curcumin supplementation. CNS Neurol Disord-Drug Targets (Formerly Curr Drug Targets-CNS Neurol Disord) 17(10):767–779

    CAS  Google Scholar 

  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(4):1–7

    Google Scholar 

  • Chiò A, Hammond ER, Mora G, Bonito V, Filippini G (2015) Development and evaluation of a clinical staging system for amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 86(1):38–44

    Article  PubMed  Google Scholar 

  • Clough E, Barrett T (2016) The gene expression omnibus database. In: Statistical genomics, pp 93-110. Humana Press, New York, NY

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13

    Article  Google Scholar 

  • Dash BP, Naumann M, Sterneckert J, Hermann A (2020) Genome wide analysis points towards subtype-specific diseases in different genetic forms of amyotrophic lateral sclerosis. Int J Mol Sci 21(18):6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23(14):1846–1847

    Article  PubMed  Google Scholar 

  • De Felice B, Guida M, Guida M, Coppola C, De Mieri G, Cotrufo R (2012) A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 508(1):35–40

    Article  PubMed  Google Scholar 

  • Di Pietro L, Lattanzi W, Bernardini C (2018) Skeletal muscle microRNAs as key players in the pathogenesis of amyotrophic lateral sclerosis. Int J Mol Sci 19(5):1534

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrawell NE, McAlary L, Lum JS, Chisholm CG, Warraich ST, Blair IP, Yerbury JJ (2020) Ubiquitin homeostasis is disrupted in TDP-43 and FUS cell models of ALS. Iscience 23(11):101700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freischmidt A, Müller K, Ludolph AC, Weishaupt JH (2013) Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun 1(1):1–9

    Article  Google Scholar 

  • Freischmidt A, Müller K, Zondler L, Weydt P, Volk AE, Božič AL, Weishaupt JH (2014) Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain 137(11):2938–2950

    Article  PubMed  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Van Den Berg LH (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3(1):1–19

    Google Scholar 

  • Huang HY, Lin YCD, Li J, Huang KY, Shrestha S, Hong HC, Huang HD (2020) miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res 48(D1):D148–D154

    CAS  PubMed  Google Scholar 

  • Jensen L, Jørgensen LH, Bech RD, Frandsen U, Schrøder HD (2016) Skeletal muscle remodelling as a function of disease progression in amyotrophic lateral sclerosis. BioMed research international

  • Joseph C, Mangani AS, Gupta V, Chitranshi N, Shen T, Dheer Y, Gupta V (2020) Cell cycle deficits in neurodegenerative disorders: Uncovering molecular mechanisms to drive innovative therapeutic development. Aging Dis 11(4):946

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keon M, Musrie B, Dinger M, Brennan SE, Santos J, Saksena NK (2021) Destination amyotrophic lateral sclerosis. Front Neurol 12:392

    Article  Google Scholar 

  • Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Turner MR (2021) Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 17(2):104–118

    Article  PubMed  Google Scholar 

  • Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Reddy PH (2018) MicroRNA-455-3p as a potential biomarker for Alzheimer’s disease: an update. Frontiers in Aging Neuroscience 10:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Reddy AP, Yin X, Reddy PH (2019) Novel MicroRNA-455–3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1865(9):2428–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laneve P, Tollis P, Caffarelli E (2021) RNA deregulation in amyotrophic lateral sclerosis: the noncoding perspective. Int J Mol Sci 22(19):10285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhou F, Guan Y, Meng F, Zhao Z, Su Q, Wang X (2022) The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells 11(3):572

    Article  PubMed  PubMed Central  Google Scholar 

  • Loeffler JP, Picchiarelli G, Dupuis L, Gonzalez De Aguilar JL (2016) The role of skeletal muscle in amyotrophic lateral sclerosis. Brain Pathol 26(2):227–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Majidinia M, Mir SM, Mirza-Aghazadeh-Attari M, Asghari R, Kafil HS, Safa A, Yousefi B (2020) MicroRNAs, DNA damage response and ageing. Biogerontology 21:275–291

    Article  CAS  PubMed  Google Scholar 

  • Majidinia M, Karimian A, Alemi F, Yousefi B, Safa A (2020b) Targeting miRNAs by polyphenols: Novel therapeutic strategy for aging. Biochem Pharmacol 173:113688

    Article  CAS  PubMed  Google Scholar 

  • Maor-Nof M, Shipony Z, Lopez-Gonzalez R, Nakayama L, Zhang YJ, Couthouis J, Gitler AD (2021) p53 is a central regulator driving neurodegeneration caused by C9orf72 poly (PR). Cell 184(3):689–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA (2019) ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 13:1310

    Article  PubMed  PubMed Central  Google Scholar 

  • Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, Woolley SC (2009) Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 73(15):1218–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan S, Orrell RW (2016) Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull 119(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Lim-Wilby M (2008) Molecular docking. In: Molecular modeling of proteins (pp 365–382). Humana Press

  • Muramatsu M, Lapiz MDS, Tanaka E, Grenhoff J (1998) Serotonin inhibits synaptic glutamate currents in rat nucleus accumbens neurons via presynaptic 5-HT1B receptors. Eur J Neurosci 10(7):2371–2379

    Article  CAS  PubMed  Google Scholar 

  • Noronha O, Mesarosovo L, Anink JJ, Iyer A, Aronica E, Mills JD (2022) Differentially expressed miRNAs in age-related neurodegenerative diseases: a meta-analysis. Genes 13(6):1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, Tyers M (2021) The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 30(1):187–200

    Article  CAS  PubMed  Google Scholar 

  • Palmisano R, Golfi P, Heimann P, Shaw C, Troakes C, Schmitt-John T, Bartsch JW (2011) Endosomal accumulation of APP in wobbler motor neurons reflects impaired vesicle trafficking: implications for human motor neuron disease. BMC Neurosci 12(1):1–10

    Article  Google Scholar 

  • Panio A, Cava C, D’Antona S, Bertoli G, Porro D (2022) Diagnostic circulating miRNAs in sporadic amyotrophic lateral sclerosis. Front Med 1207

  • Rabinovich-Toidman P, Rabinovich-Nikitin I, Ezra A, Barbiro B, Fogel H, Slutsky I, Solomon B (2015) Mutant SOD1 increases APP expression and phosphorylation in cellular and animal models of ALS. PLoS ONE 10(11):e0143420

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman MF, Rahman MR, Islam T, Zaman T, Shuvo MAH, Hossain MT, Moni MA (2019) A bioinformatics approach to decode core genes and molecular pathways shared by breast cancer and endometrial cancer. Informatics in Medicine Unlocked 17:100274

    Article  Google Scholar 

  • Raisch J, Darfeuille-Michaud A, Nguyen HTT (2013) Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol: WJG 19(20):2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci C, Marzocchi C, Battistini S (2018) MicroRNAs as biomarkers in amyotrophic lateral sclerosis. Cells 7(11):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell AP, Wada S, Vergani L, Hock MB, Lamon S, Léger B, Akimoto T (2013) Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 49:107–117

    Article  CAS  PubMed  Google Scholar 

  • Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M, Ghafouri-Fard S (2020) miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother 132:110903

    Article  CAS  PubMed  Google Scholar 

  • Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Lancet D (2010) GeneCards Version 3: the human gene integrator. Database

  • Sandyk R (2006) Serotonergic mechanisms in amyotrophic lateral sclerosis. Int J Neurosci 116(7):775–826

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanga S, Brambilla L, Tasiaux B, Dang AH, Ivanoiu A, Octave JN, Kienlen-Campard P (2018) A role for GDNF and soluble APP as biomarkers of amyotrophic lateral sclerosis pathophysiology. Front Neurol 9:384

    Article  PubMed  PubMed Central  Google Scholar 

  • Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z (2014) Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve 49(6):786–803

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Mering CV (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Taguchi YH, Wang H (2018) Exploring microRNA biomarker for amyotrophic lateral sclerosis. Int J Mol Sci 19(5):1318

    Article  PubMed  PubMed Central  Google Scholar 

  • Talbot K (2014) Amyotrophic lateral sclerosis: cell vulnerability or system vulnerability? J Anat 224(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Tejido C, Pakravan D, Bosch LVD (2021) Potential therapeutic role of HDAC inhibitors in FUS-ALS. Front Mol Neurosci 154

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeiren Y, Janssens J, Van Dam D, De Deyn PP (2018) Serotonergic dysfunction in amyotrophic lateral sclerosis and Parkinson’s disease: similar mechanisms, dissimilar outcomes. Front Neurosci 12:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt MA, Ehsaei Z, Knuckles P, Higginbottom A, Helmbrecht MS, Kunath T, Taylor V (2018) TDP-43 induces p53-mediated cell death of cortical progenitors and immature neurons. Sci Rep 8(1):1–13

    Article  CAS  Google Scholar 

  • Wakabayashi K, Mori F, Kakita A, Takahashi H, Utsumi J, Sasaki H (2014) Analysis of microRNA from archived formalin-fixed paraffin-embedded specimens of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2(1):1–11

    Article  Google Scholar 

  • Wang MD, Little J, Gomes J, Cashman NR, Krewski D (2017) Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology 61:101–130

    Article  CAS  PubMed  Google Scholar 

  • Wijesekera LC, Nigel Leigh P (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4(1):1–22

    Article  Google Scholar 

  • Wu HZY, Thalamuthu A, Cheng L, Fowler C, Masters CL, Sachdev P, Mather KA (2020) Differential blood miRNA expression in brain amyloid imaging-defined Alzheimer’s disease and controls. Alzheimer’s Res Ther 12(1):1–11

    Article  Google Scholar 

  • Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Yu G (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2(3):100141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Chan HS, Hu Z (2017) Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 7(2):e1298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RBP- writing the original draft, methodology, and formal analysis; AKB- data curation, review, and editing of the manuscript, visualization, and supervision; KT- conceptualization, review, and editing of the manuscript, supervision, and project administration.

Corresponding authors

Correspondence to Akhilesh Kumar Bajpai or Kavitha Thirumurugan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R.B., Bajpai, A.K. & Thirumurugan, K. Differential Expression of MicroRNAs and Predicted Drug Target in Amyotrophic Lateral Sclerosis. J Mol Neurosci 73, 375–390 (2023). https://doi.org/10.1007/s12031-023-02124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-023-02124-z

Keywords

Navigation