Skip to main content

Advertisement

Log in

Knockdown of Rab7B, But Not of Rab7A, Which Antagonistically Regulates Oligodendroglial Cell Morphological Differentiation, Recovers Tunicamycin-Induced Defective Differentiation in FBD-102b Cells

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the central nervous system (CNS), insulative myelin sheaths are generated from the differentiated plasma membranes of oligodendrocytes (oligodendroglial cells) and surround neuronal axons to achieve saltatory conduction. Despite the functional involvement of myelin sheaths in the CNS, the molecular mechanism by which oligodendroglial cells themselves undergo differentiation of plasma membranes remains unclear. It also remains to be explored whether their signaling mechanisms can be applied to treating diseases of the oligodendroglial cells. Here, we describe that Rab7B of Rab7 subfamily small GTPases negatively regulates oligodendroglial cell morphological differentiation using FBD-102b cells, which are model cells undergoing differentiation of oligodendroglial precursors. Knockdown of Rab7B or Rab7A by the respective specific siRNAs in cells positively or negatively regulated morphological differentiation, respectively. Consistently, these changes were supported by changes on differentiation- and myelination-related structural protein and protein kinase markers. We also found that knockdown of Rab7B has the ability to recover inhibition of morphological differentiation following tunicamycin-induced endoplasmic reticulum (ER) stress, which mimics one of the major molecular pathological causes of hereditary hypomyelinating disorders in oligodendroglial cells, such as Pelizaeus-Merzbacher disease (PMD). These results suggest that the respective molecules among very close Rab7 homologues exhibit differential roles in morphological differentiation and that knocking down Rab7B can recover defective differentiating phenotypes under ER stress, thereby adding Rab7B to the list of molecular therapeutic cues taking advantage of signaling mechanisms for oligodendroglial diseases like PMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  • Adams KL, Dahl KD, Gallo V, Macklin WB (2021) Intrinsic and extrinsic regulators of oligodendrocyte progenitor proliferation and differentiation. Semin Cell Dev Biol 116:16–24

    Article  CAS  PubMed  Google Scholar 

  • Auer-Grumbach M (2004) Hereditary sensory neuropathies. Drugs Today 40:385–394

    Article  CAS  Google Scholar 

  • Balderhaar HJ, Ungermann C (2013) CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Barateiro A, Brites D, Fernandes A (2016) Oligodendrocyte development and myelination in neurodevelopment: molecular mechanisms in health and disease. Curr Pharm Des 22:656–679

    Article  CAS  PubMed  Google Scholar 

  • Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bercury KK, Dai J, Sachs HH, Ahrendsen JT, Wood TL, Macklin WB (2014) Conditional ablation of raptor or rictor has differential impact on oligodendrocyte differentiation and CNS myelination. J Neurosci 34:4466–4480

    Article  PubMed  PubMed Central  Google Scholar 

  • Borg M, Bakke O, Progida C (2014) A novel interaction between Rab7b and actomyosin reveals a dual role in intracellular transport and cell migration. J Cell Sci 127:4927–4939

    PubMed  PubMed Central  Google Scholar 

  • Cogli L, Piro F, Bucci C (2009) Rab7 and the CMT2B disease. Biochem Soc Trans 37:1027–1031

    Article  CAS  PubMed  Google Scholar 

  • Condon KJ, Sabatini DM (2019) Nutrient regulation of mTORC1 at a glance. J Cell Sci 132:jcs2225

  • Dhaunchak AS, Colman DR, Nave KA (2011) Misalignment of PLP/DM20 transmembrane domains determines protein misfolding in Pelizaeus-Merzbacher disease. J Neurosci 31:14961–14971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distefano MB, Kjos I, Bakke O, Progida C (2015) Rab7b at the intersection of intracellular trafficking and cell migration. Commun Integr Biol 8:e1023492

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbaz B, Popko B (2019) Molecular control of oligodendrocyte development. Trends Neurosci 42:263–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figlia G, Gerber D, Suter U (2018) Myelination and mTOR. Glia 66:693–707

    Article  PubMed  Google Scholar 

  • Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar WH, Matsumura F, Maekawa M, Bito H, Narumiya S (1998) Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E–115 cells. J Cell Biol 141:1625–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homma Y, Hiragi S, Fukuda M (2021) Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 288:36–55

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil GS, Davis RJ (2016) Cell signaling and stress responses. Cold Spring Harb Perspect Biol 8:a006072

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Tago K, Fukatsu S, Okabe M, Shirai R, Oizumi H, Ohbuchi K, Yamamoto M, Mizoguchi K, Miyamoto Y, Yamauchi J (2022) CRISPR/CasRx-mediated RNA knockdown reveals that ACE2 is involved in the regulation of oligodendroglial cell morphological differentiation. Non-Coding RNA 8:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchitsu Y, Fukuda M (2018) Revisiting Rab7 functions in mammalian autophagy: Rab7 knockout studies. Cells 7:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loi M, Raimondi A, Morone D, Molinari M (2019) ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress. Nat Commun 10:5058

    Article  PubMed  PubMed Central  Google Scholar 

  • Marubashi S, Fukuda M (2020) Rab7B/42 Is functionally involved in protein degradation on melanosomes in keratinocytes. Cell Struct Funct 45:45–55

    Article  CAS  PubMed  Google Scholar 

  • Mateus D, Marini ES, Progida C, Bakke O (2018) Rab7a modulates ER stress and ER morphology. Biochim Biophys Acta Mol Cell Res 1865:781–793

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Torii T, Homma K, Oizumi H, Ohbuchi K, Mizoguchi K, Takashima S, Yamauchi J (2022) The adaptor SH2B1 and the phosphatase PTP4A1 regulate the phosphorylation of cytohesin-2 in myelinating Schwann cells in mice. Sci Signal 15:eabi5276

  • Miyamoto Y, Torii T, Tago K, Tanoue A, Takashima S, Yamauchi J (2018) BIG1/Arfgef1 and Arf1 regulate the initiation of myelination by Schwann cells in mice. Sci Adv 4:eaar4471

  • Miyamoto Y, Yamauchi J, Chan JR, Okada A, Tomooka Y, Hisanaga S, Tanoue A (2007) Cdk5 regulates differentiation of oligodendrocyte precursor cells through the direct phosphorylation of paxillin. J Cell Sci 120:4355–4366

    Article  CAS  PubMed  Google Scholar 

  • Morimura T, Numata Y, Nakamura S, Hirano E, Gotoh L, Goto YI, Urushitani M, Inoue K (2014) Attenuation of endoplasmic reticulum stress in Pelizaeus-Merzbacher disease by an anti-malaria drug, chloroquine. Exp Biol Med 239:489–501

    Article  Google Scholar 

  • Ng EL, Tang BL (2008) Rab GTPases and their roles in brain neurons and glia. Brain Res Rev 58:236–246

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Fujiki Y, Sato T, Kato Y, Shirai R, Oizumi H, Yamamoto M, Ohbuchi K, Miyamoto Y, Mizoguchi K, Yamauchi J (2022) Hesperetin, a citrus flavonoid, ameliorates inflammatory cytokine-mediated inhibition of oligodendroglial cell morphological differentiation. Neurol Int 14:471–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeffer SR, Soldati T, Geissler H, Rancaño C, Dirac-Svejstrup B (1995) Selective membrane recruitment of Rab GTPases. Cold Spring Harb Symp Quant Biol 60:221–227

    Article  CAS  PubMed  Google Scholar 

  • Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C (2010) Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 123:1480–1491

    Article  CAS  PubMed  Google Scholar 

  • Shy ME (2004) Charcot-Marie-Tooth disease: an update. Curr Opin Neurol 17:579–585

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Nave KA (2015) Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8:a020479

    Article  PubMed  Google Scholar 

  • Snider MD (2003) A role for Rab7 GTPase in growth factor-regulated cell nutrition and apoptosis. Mol Cell 12:796–797

    Article  CAS  PubMed  Google Scholar 

  • Stroupe C (2018) This is the end: regulation of Rab7 nucleotide binding in endolysosomal trafficking and autophagy. Front Cell Dev Biol 6:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian X, Teng J, Chen J (2021) New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy 17:2680–2688

    Article  CAS  PubMed  Google Scholar 

  • Torii T, Miyamoto Y, Yamauchi J, Tanoue A (2014) Pelizaeus-Merzbacher disease: cellular pathogenesis and pharmacologic therapy. Pediatr Int 56:659–666

    Article  PubMed  Google Scholar 

  • Urai Y, Yamawaki M, Watanabe N, Seki Y, Morimoto T, Tago K, Homma K, Sakagami H, Miyamoto Y, Yamauchi J (2018) Pull down assay for GTP-bound form of Sar1a reveals its activation during morphological differentiation. Biochem Biophys Res Commun 503:2047–2205

    Article  CAS  PubMed  Google Scholar 

  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven K, Timmerman V, Mauko B, Pieber TR, De Jonghe P, Auer-Grumbach M (2006) Recent advances in hereditary sensory and autonomic neuropathies. Curr Opin Neurol 19:474–480

    Article  CAS  PubMed  Google Scholar 

  • Vestre K, Persiconi I, Borg Distefano M, Mensali N, Guadagno NA, Bretou M, Wälchli S, Arnold-Schrauf C, Bakke O, Dalod M, Lennon-Dumenil AM, Progida C (2021) Rab7b regulates dendritic cell migration by linking lysosomes to the actomyosin cytoskeleton. J Cell Sci 134:jcs259221

  • Wang T, Ming Z, Xiaochun W, Hong W (2011) Rab7: Role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal 23:516–521

    Article  PubMed  Google Scholar 

  • Wilding AS, Patte-Mensah C, Taleb O, Brun S, Kemmel V, Mensah-Nyagan AG (2018) Protective effect of 4-phenylbutyrate against proteolipid protein mutation-induced endoplasmic reticulum stress and oligodendroglial cell death. Neurochem Int 118:185–194

    Article  CAS  PubMed  Google Scholar 

  • Wolf NI, Ffrench-Constant C, van der Knaap MS (2021) Hypomyelinating leukodystrophies - unravelling myelin biology. Nat Rev Neurol 17:88–103

    Article  CAS  PubMed  Google Scholar 

  • Wrabetz L, D’Antonio M, Pennuto M, Dati G, Tinelli E, Fratta P, Previtali S, Imperiale D, Zielasek J, Toyka K, Avila RL, Kirschner DA, Messing A, Feltri ML, Quattrini A (2006) Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice. J Neurosci 26:2358–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi J, Torii T, Kusakawa S, Sanbe A, Nakamura K, Takashima S, Hamasaki H, Kawaguchi S, Miyamoto Y, Tanoue A (2010) The mood stabilizer valproic acid improves defective neurite formation caused by Charcot-Marie-Tooth disease-associated mutant Rab7 through the JNK signaling pathway. J Neurosci Res 88:3189–3197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Takako Morimoto and Yoichi Seki (Tokyo University of Pharmacy and Life Sciences) for the insightful comments they provided throughout this study.

Funding

This work was supported by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Grants-in-Aid for Medical Scientific Research from the Japanese Ministry of Health, Labor and Welfare (MHLW). This work was also supported by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST), Takeda Science Foundation, Daiichi Sankyo Science Foundation, and Mitsubishi Tanabe Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Junji Yamauchi and Yuki Miyamoto designed this study, wrote this manuscript, and edited it. Nana Fukushima, Remina Shirai, Takanari Sato, Sayumi Nakamura, and Arisa Ochiai performed the experiments. Nana Fukushima and Remina Shirai performed the statistical analyses.

Corresponding authors

Correspondence to Yuki Miyamoto or Junji Yamauchi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5304 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima, N., Shirai, R., Sato, T. et al. Knockdown of Rab7B, But Not of Rab7A, Which Antagonistically Regulates Oligodendroglial Cell Morphological Differentiation, Recovers Tunicamycin-Induced Defective Differentiation in FBD-102b Cells. J Mol Neurosci 73, 363–374 (2023). https://doi.org/10.1007/s12031-023-02117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-023-02117-y

Keywords

Navigation