Skip to main content
Log in

Prenatal Methamphetamine Hydrochloride Exposure Leads to Signal Transduction Alteration and Cell Death in the Prefrontal Cortex and Amygdala of Male and Female Rats’ Offspring

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the last decade, there has been a great increase in methamphetamine hydrochloride (METH) abuse by pregnant women that exposes fetus and human offspring to a wide variety of developmental impairments that may be the underlying causes of future psychosocial issues. Herein, we investigated whether prenatal METH exposure with different doses (2 and 5 mg/kg) could influence neuronal cell death and antioxidant level in the different brain regions of adult male and female offspring. Adult male and female Wistar rats prenatally exposed to METH (2 or 5 mg/kg) and/or saline was used in this study. At week 12, adult rats’ offspring were decapitated to collect different brain region tissues including amygdala (AMY) and prefrontal cortices (PFC). Western blot analysis was performed to evaluate the apoptosis- and autophagy-related markers, and enzymatic assay was used to measure the level of catalase and also reduced glutathione (GSH). Our results showed that METH exposure during pregnancy increased the level of apoptosis (BAX/Bcl-2 and Caspase-3) and autophagy (Beclin-1 and LC3II/LC3I) in the PFC and AMY areas of both male and female offspring’s brain. Also, we found an elevation in the GSH content of all both mentioned brain areas and catalase activity of PFC in the offspring’s brain. These changes were more significant in female offspring. Being prenatally exposed to METH increased cell death at least partly via apoptosis and autophagy in AMY and PFC of male and female offspring’s brain, while the antioxidant system tried to protect cells in these regions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acuff-Smith KD, Schilling MA, Fisher JE, Vorhees CV (1996) Stage-specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicol Teratol 18(2):199–215

    Article  CAS  Google Scholar 

  • Ajayi AF, Akhigbe RE (2020) Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract 6(1):1–15

    Article  Google Scholar 

  • Bagheri J, Rajabzadeh A, Baei F, Jalayeri Z, Ebrahimzadeh-bideskan A (2017) The effect of maternal exposure to methamphetamine during pregnancy and lactation period on hippocampal neurons apoptosis in rat offspring. Toxin Rev 36(3):194–203

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Bubenikova-Valesova V, Kacer P, Syslova K, Rambousek L, Janovsky M, Schutova B, Hruba L, Slamberova R (2009) Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int J Dev Neurosci 27(6):525–530

    Article  CAS  Google Scholar 

  • Button RW, Roberts SL, Willis TL, Hanemann CO, Luo S (2017) Accumulation of autophagosomes confers cytotoxicity. J Biol Chem 292(33):13599–13614

    Article  CAS  Google Scholar 

  • Deng X, Jayanthi S, Ladenheim B, Krasnova IN, Cadet JL (2002) Mice with partial deficiency of c-Jun show attenuation of methamphetamine-induced neuronal apoptosis. Mol Pharmacol 62(5):993–1000

    Article  CAS  Google Scholar 

  • Deng X, Ladenheim B, Jayanthi S, Cadet JL (2007) Methamphetamine administration causes death of dopaminergic neurons in the mouse olfactory bulb. Biol Psychiat 61(11):1235–1243

    Article  CAS  Google Scholar 

  • Diaz SD, Smith LM, LaGasse LL, Derauf C, Newman E, Shah R, Arria A, Huestis MA, Della Grotta S, Dansereau LM, Neal C, Lester BM (2014) Effects of prenatal methamphetamine exposure on behavioral and cognitive findings at 7.5 years of age. J Pediatr 164(6):1333–1338

    Article  CAS  Google Scholar 

  • Doherty J, Baehrecke EH (2018) Life, death and autophagy. Nat Cell Biol 20(10):1110–1117

    Article  CAS  Google Scholar 

  • Dong N, Zhu J, Han W, Wang S, Yan Z, Ma D, Goh ELK, Chen T (2018) Maternal methamphetamine exposure causes cognitive impairment and alteration of neurodevelopment-related genes in adult offspring mice. Neuropharmacology 140:25–34

    Article  CAS  Google Scholar 

  • Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  Google Scholar 

  • Freedman RR, Johanson C-E, Tancer ME (2005) Thermoregulatory effects of 3, 4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 183(2):248–256

    Article  CAS  Google Scholar 

  • Friedman NP, Robbins TW (2022) The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 47(1):72–89

    Article  Google Scholar 

  • Gabrhelík R, Skurtveit S, Nechanská B, Handal M, Mahic M, Mravčík V (2021) Prenatal methamphetamine exposure and adverse neonatal outcomes: a nationwide cohort study. Eur Addict Res 27(2):97–106

    Article  Google Scholar 

  • Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2–3):143–151

    Article  CAS  Google Scholar 

  • Heller A, Bubula N, Lew R, Heller B, Won L (2001) Gender-dependent enhanced adult neurotoxic response to methamphetamine following fetal exposure to the drug. J Pharmacol Exp Ther 298(2):769–779

    CAS  Google Scholar 

  • Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, Li S, Wang X, Li B (2014) Beclin 1, an autophagy-related gene, augments apoptosis in U87 glioblastoma cells. Oncol Rep 31(4):1761–1767

    Article  CAS  Google Scholar 

  • Inoue H, Nakatome M, Terada M, Mizuno M, Ono R, Iino M, Ino Y, Ogura Y, Kuroki H, Matoba R (2004) Maternal methamphetamine administration during pregnancy influences on fetal rat heart development. Life Sci 74(12):1529–1540

    Article  CAS  Google Scholar 

  • Jalayeri-Darbandi Z, Rajabzadeh A, Hosseini M, Beheshti F, Ebrahimzadeh-Bideskan A (2018) The effect of methamphetamine exposure during pregnancy and lactation on hippocampal doublecortin expression, learning and memory of rat offspring. Anat Sci Int 93(3):351–363

    Article  CAS  Google Scholar 

  • Jang EY, Yang CH, Hedges DM, Kim SP, Lee JY, Ekins TG, Garcia BT, Kim HY, Nelson AC, Kim NJ (2017) The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens. Addict Biol 22(5):1304–1315

    Article  CAS  Google Scholar 

  • Jeng W, Wong AW, Ting-A-Kee R, Wells PG (2005) Methamphetamine-enhanced embryonic oxidative DNA damage and neurodevelopmental deficits. Free Radical Biol Med 39(3):317–326

    Article  CAS  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60(2):379–407

    Article  CAS  Google Scholar 

  • Li Y, Trush MA (1993) DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu (II)/Cu (I) redox cycle and reactive oxygen generation. Carcinogenesis 14(7):1303–1311

    Article  CAS  Google Scholar 

  • Macúchová E, Nohejlová K, Šlamberová R (2014) Gender differences in the effect of adult amphetamine on cognitive functions of rats prenatally exposed to methamphetamine. Behav Brain Res 270:8–17

    Article  Google Scholar 

  • Moore D, Turner J, Goodwin J, Fulton S, Singer L, Parrott A (2011) Alcohol, drugs and medication in pregnancy: the long term outcome for the child

  • Nopparat C, Porter JE, Ebadi M, Govitrapong P (2010) The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res 49(4):382–389

    Article  CAS  Google Scholar 

  • Patlevič P, Vašková J, Švorc P Jr, Vaško L, Švorc P (2016) Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr Med Res 5(4):250–258

    Article  Google Scholar 

  • Pessoa L (2010) Emotion and cognition and the amygdala: from “what is it?” to “what’s to be done?” Neuropsychologia 48(12):3416–3429

    Article  Google Scholar 

  • Pisani C, Ramella M, Boldorini R, Loi G, Billia M, Boccafoschi F, Volpe A, Krengli M (2020) Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • Preller KH, Hulka LM, Vonmoos M, Jenni D, Baumgartner MR, Seifritz E, Dziobek I, Quednow BB (2014) Impaired emotional empathy and related social network deficits in cocaine users. Addict Biol 19(3):452–466

    Article  Google Scholar 

  • Proebstl L, Kamp F, Koller G, Soyka M (2018) Cognitive deficits in methamphetamine users: how strong is the evidence? Pharmacopsychiatry 51(06):243–250

    Article  CAS  Google Scholar 

  • Pyae YYP The United Nations office of drugs and crime. https://www.unodc.org/

  • Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  Google Scholar 

  • Riddle EL, Fleckenstein AE, Hanson GR (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J 8(2):E413–E418

    Article  Google Scholar 

  • Roos A, Fouche JP, du Toit S, du Plessis S, Stein DJ, Donald KA (2020) Structural brain network development in children following prenatal methamphetamine exposure. J Comp Neurol 528(11):1856–1863

    Article  CAS  Google Scholar 

  • Roos A, Jones G, Howells FM, Stein DJ, Donald KA (2014) Structural brain changes in prenatal methamphetamine-exposed children. Metab Brain Dis 29(2):341–349

    Article  CAS  Google Scholar 

  • Rorabaugh BR, Seeley SL, Bui AD, Sprague L, D’Souza MS (2016) Prenatal methamphetamine differentially alters myocardial sensitivity to ischemic injury in male and female adult hearts. Am J Physiol Heart Circ Physiol 310(4):H516–H523

    Article  Google Scholar 

  • Roussotte FF, Rudie JD, Smith L, O’Connor MJ, Bookheimer SY, Narr KL, Sowell ER (2012) Frontostriatal connectivity in children during working memory and the effects of prenatal methamphetamine, alcohol, and polydrug exposure. Dev Neurosci 34(1):43–57

    Article  CAS  Google Scholar 

  • Schutová B, Hrubá L, Rokyta R, Šlamberová R (2013) Gender differences in behavioral changes elicited by prenatal methamphetamine exposure and application of the same drug in adulthood. Dev Psychobiol 55(3):232–242

    Article  Google Scholar 

  • Šlamberová R, Charousová P, Pometlová M (2005a) Maternal behavior is impaired by methamphetamine administered during pre-mating, gestation and lactation. Reprod Toxicol 20(1):103–110

    Article  Google Scholar 

  • S̆lamberová, R, Charousová P, Pometlová M (2005b) Methamphetamine administration during gestation impairs maternal behavior. Dev Psychobiol J Int Soc Dev Psychobiol 46(1):57–65

    Article  Google Scholar 

  • Slamberová R, Macúchová E, Nohejlová-Deykun K, Schutová B, Hrubá L, Rokyta R (2013) Gender differences in the effect of prenatal methamphetamine exposure and challenge dose of other drugs on behavior of adult rats. Physiol Res 62(Suppl 1):S99-s108

    Article  Google Scholar 

  • Šlamberová R, Vrajová M, Schutová B, Mertlová M, Macúchová E, Nohejlová K, Hrubá L, Puskarčíková J, Bubeníková-Valešová V, Yamamotová A (2014) Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus. Physiol Res 63

    Google Scholar 

  • Smith LM, LaGasse LL, Derauf C, Grant P, Shah R, Arria A, Huestis M, Haning W, Strauss A, Della Grotta S (2008) Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol Teratol 30(1):20–28

    Article  CAS  Google Scholar 

  • Stek AM, Baker RS, Fisher BK, Lang U, Clark KE (1995) Fetal responses to maternal and fetal methamphetamine administration in sheep. Am J Obstet Gynecol 173(5):1592–1598

    Article  CAS  Google Scholar 

  • Subu R, Jayanthi S, Cadet JL (2020) Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Arch Toxicol 94(10):3515–3526

    Article  CAS  Google Scholar 

  • Thanos PK, Kim R, Delis F, Ananth M, Chachati G, Rocco MJ, Masad I, Muniz JA, Grant SC, Gold MS (2016) Chronic methamphetamine effects on brain structure and function in rats. PLoS ONE 11(6):e0155457

    Article  Google Scholar 

  • Warton FL, Taylor PA, Warton CMR, Molteno CD, Wintermark P, Lindinger NM, Zöllei L, van der Kouwe A, Jacobson JL, Jacobson SW, Meintjes EM (2018) Prenatal methamphetamine exposure is associated with corticostriatal white matter changes in neonates. Metab Brain Dis 33(2):507–522

    Article  CAS  Google Scholar 

  • Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108(1):4–18

    Article  CAS  Google Scholar 

  • Westbrook SR, Dwyer MR, Cortes LR, Gulley JM (2020) Extended access self-administration of methamphetamine is associated with age-and sex-dependent differences in drug taking behavior and recognition memory in rats. Behav Brain Res 390:112659

    Article  CAS  Google Scholar 

  • Wu Y-L, Jiang Y-Z, Jin X-J, Lian L-H, Piao J-Y, Wan Y, Jin H-R, Lee JJ, Nan J-X (2010) Acanthoic acid, a diterpene in Acanthopanax koreanum, protects acetaminophen-induced hepatic toxicity in mice. Phytomedicine 17(6):475–479

    Article  CAS  Google Scholar 

  • Xu X, Huang E, Luo B, Cai D, Zhao X, Luo Q, Jin Y, Chen L, Wang Q, Liu C (2018) Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway. FASEB J 32(12):6737–6759

    Article  CAS  Google Scholar 

  • Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, He J, Liao L, Xiong K, Yi C-X (2018) The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. Front Mol Neurosci 11:186

    Article  Google Scholar 

  • Yasaei R, Saadabadi A (2018) Methamphetamine

  • Yip SW, Potenza EB, Balodis IM, Lacadie CM, Sinha R, Mayes LC, Potenza MN (2014) Prenatal cocaine exposure and adolescent neural responses to appetitive and stressful stimuli. Neuropsychopharmacology 39(12):2824–2834

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the research grant of Shahid Beheshti University of Medical Sciences (No. 13422–8-2).

Author information

Authors and Affiliations

Authors

Contributions

NZ designed and performed the molecular experiments, analyzed the data, and wrote the manuscript. NM performed the conception, experimental design, supervision, and reviewed the manuscript. SHM performed the molecular experiments, analyzed the data, and wrote the manuscript. FF analyzed the data and reviewed the manuscript. SK contributed to design and reviewed the manuscript. ZM performed the molecular experiment and analyzed the data. FK performed the conception, experimental design, and reviewed the manuscript. BGY performed the conception, experimental design, supervision, analysis, interpretation, and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Batool Ghorbani Yekta.

Ethics declarations

Ethical Approval

This research has received ratification from the Neuroscience Research Center Ethics Board (IR.SBMU.PHNS.REC.1396.112).

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, N., Maghsoudi, N., Mirbehbahani, S.H. et al. Prenatal Methamphetamine Hydrochloride Exposure Leads to Signal Transduction Alteration and Cell Death in the Prefrontal Cortex and Amygdala of Male and Female Rats’ Offspring. J Mol Neurosci 72, 2233–2241 (2022). https://doi.org/10.1007/s12031-022-02062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-02062-2

Keywords

Navigation