Skip to main content

Advertisement

Log in

Lipidomics Analysis Reveals a Protective Effect of Myriocin on Cerebral Ischemia/Reperfusion Model Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Ceramide accumulation has been associated with ischemic stroke. Myriocin is an effective serine palmitoyltransferase (SPT) inhibitor that reduces ceramide levels by inhibiting the de novo synthesis pathway. However, the role of myriocin in cerebral ischemia/reperfusion (I/R) injury and its underlying mechanism remain unknown. The present study established an experimental rat model of middle cerebral artery occlusion (MCAO). We employed ultra-performance liquid chromatograph quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)–based lipidomic analysis to identify the disordered lipid metabolites and the effects of myriocin in cerebral cortical tissues of rats. In this study, we found 15 characterized lipid metabolites involved in sphingolipid and glycerophospholipid metabolism in cerebral I/R-injured rats, and these alterations were significantly alleviated by myriocin. Specifically, the mRNA expression of metabolism-related enzyme genes was detected by real-time quantitative polymerase chain reaction (RT-qPCR). We demonstrated that myriocin could regulate the mRNA expression of ASMase, NSMase, SGMS1, SGMS2, ASAH1, ACER2, and ACER3, which are involved in sphingolipid metabolism and PLA2, which is involved in glycerophospholipid metabolism. Moreover, TUNEL and Western blot assays showed that myriocin plays a key role in regulating neuronal cell apoptosis. In summary, the present work provides a new perspective for the systematic study of metabolic changes in ischemic stroke and the therapeutic applications of myriocin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data generated during the current study are available from the corresponding author upon request.

Availability of Data and Materials

The data and materials generated during the current study are available from the corresponding author upon request.

References

  • Au A (2018) Metabolomics and lipidomics of ischemic stroke. Adv Clin Chem 85:31–69

    Article  CAS  Google Scholar 

  • Bhuiyan MI, Islam MN, Jung SY, Yoo HH, Lee YS, Jin C (2010) Involvement of ceramide in ischemic tolerance induced by preconditioning with sublethal oxygen-glucose deprivation in primary cultured cortical neurons of rats. Biol Pharm Bull 33:11–17

    Article  CAS  Google Scholar 

  • Bonezzi F, Piccoli M, Dei Cas M, Paroni R, Mingione A, Monasky MM, Caretti A, Riganti C et al (2019) Sphingolipid synthesis inhibition by myriocin administration enhances lipid consumption and ameliorates lipid response to myocardial ischemia reperfusion injury. Front Physiol 10:986

    Article  Google Scholar 

  • Cas MD, Zulueta A, Mingione A, Caretti A, Ghidoni R, Signorelli P, Paroni R (2020) An innovative lipidomic workflow to investigate the lipid profile in a cystic fibrosis cell line. Cells 12:1197

    Article  Google Scholar 

  • Cha HJ, He C, Zhao H, Dong Y, An I, An S (2016) Intercellular and intracellular functions of ceramides and their metabolites in skin (Review). Int J Mol Med 38:16–22

    Article  CAS  Google Scholar 

  • Chan C, Goldkorn T (2000) Ceramide path in human lung cell death. American Journal of Respiratory Cell Molecular Biology 22:460–468

    Article  CAS  Google Scholar 

  • Chao HC, Lee TH, Chiang CS, Yang SY, Kuo CH, Tang SC (2019) Sphingolipidomics investigation of the temporal dynamics after ischemic brain injury. J Proteome Res 18:3470–3478

    Article  CAS  Google Scholar 

  • Cheng C-Y, Lee Y (2016) Anti-inflammatory effects of traditional chinese medicines against ischemic injury in in vivo models of cerebral ischemia. Evidence-based Complementary Alternative Medicine: eCAM 2016

  • Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585:153–162

    Article  CAS  Google Scholar 

  • Doria ML, Cotrim Z, Macedo B, Simões C, Domingues P, Helguero L, Domingues M (2011) Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells. Breast Cancer Research Treatment 133:635–648

    Article  Google Scholar 

  • Farooqui AA, Horrocks L, Farooqui T (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chemistry Physics of Lipids 106:1–29

    Article  CAS  Google Scholar 

  • Fitzner D, Bader JM, Penkert H, Bergner CG, Su M, Weil M, Surma MA, Mann M et al (2020) Cell-Type- and Brain-Region-Resolved Mouse Brain Lipidome. Cell Rep 32:108132

    Article  CAS  Google Scholar 

  • Fyrst H, Saba J (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6:489–497

    Article  CAS  Google Scholar 

  • Grösch S, Alessenko A, Albi E (2018) The many facets of sphingolipids in the specific phases of acute inflammatory response. Mediat Inflamm 2018

  • Hannun Y, Luberto C, Argraves KM (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40:4893–4903

    Article  CAS  Google Scholar 

  • Hannun Y, Obeid L (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  Google Scholar 

  • Hannun YAJS (1996) Functions of Ceramide in Coordinating Cellular Responses to Stress 274:1855–1859

    CAS  Google Scholar 

  • Jatooratthawichot P, Talabnin C, Ngiwsara L, Rustam YH, Svasti J, Reid GE, Ketudat Cairns JR (2020) Effect of expression of human glucosylceramidase 2 isoforms on lipid profiles in COS-7 Cells. Metabolites 10

  • Khandelwal P, Yavagal D, Sacco R (2016) Sacco, R. Acute ischemic stroke intervention. J Am Coll Cardiol 67:2631–2644

    Article  Google Scholar 

  • Lai T, Zhang S, Wang Y (2014) Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  Google Scholar 

  • Lee Y-S, Choi K-M, Choi M-H, Ji S-Y, Lee S, Sin D-M, Oh K, Lee Y-M et al (2011) Serine palmitoyltransferase inhibitor myriocin induces growth inhibition of B16F10 melanoma cells through G2/M phase arrest. Cell Prolif 44

  • Liu J, Ginis I, Spatz M, Hallenbeck J (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol 278:C144-153

    Article  CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. 20:84

  • Huanwen M, Shusu G, Shengmao Y (1998) Alteration of erythrocyte membrane phospholipid composition and its correlation with rheological properties of the red blood cells in ischemic stroke

  • Mavroudakis L, Stevens SL, Duncan KD, Stenzel-Poore MP, Laskin J, Lanekoff I (2020) CpG preconditioning reduces accumulation of lysophosphatidylcholine in ischemic brain tissue after middle cerebral artery occlusion. Analytical Bioanalytical Chemistry

  • Naudí A, Cabré R, Jové MAV, Gonzalo H, Portero-Otín M, Ferrer I, Pamplona R (2015) Lipidomics of human brain aging and Alzheimer’s disease pathology. Int Rev Neurobiol 122:133–189

    Article  Google Scholar 

  • Novgorodov SA, Riley CL, Keffler JA, Yu J, Kindy MS, Macklin WB, Lombard DB, Gudz TI (2015) SIRT3 deacetylates ceramide synthases. J Biol Chem 291:1957–1973

    Article  Google Scholar 

  • Obadia N, Lessa M, Daliry A, Silvares RR, Gomes F, Tibiriçá E, Estato V (2017) Cerebral microvascular dysfunction in metabolic syndrome is exacerbated by ischemia reperfusion injury. BMC Neurosci 18:67

    Article  Google Scholar 

  • Orešič M, Seppänen-Laakso T, Sun D, Tang J, Therman S, Viehman R, Mustonen U, Van Erp TG et al (2012) Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia. 4:1

  • Peralta C, Jiménez-Castro M, Gracia-Sancho J (2013) Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol 59:1094–1106

    Article  Google Scholar 

  • Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, Mousad SA, Isenovic ER (2017) apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 15:115–122

    Article  CAS  Google Scholar 

  • Reforgiato MR, Milano G, Fabrias G, Casas J, Gasco P, Paroni R, Samaja M, Ghidoni R et al (2016) Inhibition of ceramide de novo synthesis as a postischemic strategy to reduce myocardial reperfusion injury. Basic Res Cardiol 111:12

    Article  CAS  Google Scholar 

  • Schaller B, Graf R, Jacobs AH (2003) Invited commentary: ischemic tolerance: a window to endogenous neuroprotection? Lancet 1007–1008

  • Sun GY, Shelat P, Jensen MB, He Y, Sun A, Simonyi Á (2009) Phospholipases A2 and inflammatory responses in the central nervous system. NeuroMol Med 12:133–148

    Article  Google Scholar 

  • Sun N, Keep R, Hua Y, Xi G (2016) Critical role of the sphingolipid pathway in stroke: a review of current utility and potential therapeutic targets. Transl Stroke Res 7:420–438

    Article  CAS  Google Scholar 

  • Sun Y, Saito K, Saito Y (2019) Lipid profile characterization and lipoprotein comparison of extracellular vesicles from human plasma and serum. Metabolites 9

  • Takahashi K, Ginis I, Nishioka R, Klimanis D, Barone F, White RF, Chen Y, Hallenbeck J (2004) Glucosylceramide synthase activity and ceramide levels are modulated during cerebral ischemia after ischemic preconditioning. Journal of Cerebral Blood Flow Metabolism 24:623–627

    Article  CAS  Google Scholar 

  • Tian H, Qiu T, Zhao J, Li L, Guo J (2009) Sphingomyelinase-induced ceramide production stimulate calcium-independent JNK and PP2A activation following cerebral ischemia. Brain Inj 23:1073–1080

    Article  Google Scholar 

  • Vance J (2015) Phospholipid synthesis and transport in mammalian cells. Traffic 16

  • Wadsworth J, Clarke D, McMahon S, Lowther J, Beattie AE, Langridge-Smith P, Broughton H, Dunn T et al (2013) The chemical basis of serine palmitoyltransferase inhibition by myriocin. J Am Chem Soc 135:14276–14285

    Article  CAS  Google Scholar 

  • Wu H, Bogdanov M, Zhang Y, Sun K, Zhao S, Song A, Luo R, Parchim N et al (2016) Hypoxia-mediated impaired erythrocyte Land “Cycle is pathogenic for sickle cell disease. Scientific Reports 6

  • Wu M-Y, Yiang G-T, Liao W-T, Tsai A, Cheng Y-L, Cheng P-W, Li C-Y, Li C-J (2018) Current mechanistic concepts in ischemia and reperfusion injury. cellular physiology biochemistry 46:1650 - 1667

  • Yu J, Novgorodov S, Chudakova D, Zhu H, Bielawska A, Bielawski J, Obeid L, Kindy M et al (2007a) JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction*. J Biol Chem 282:25940–25949

    Article  CAS  Google Scholar 

  • Yu W, Gao D, Jin W, Liu S-l, Qi S (2018) Propofol prevents oxidative stress by decreasing the ischemic accumulation of succinate in focal cerebral ischemia reperfusion injury. Neurochem Res 43:420–429

    Article  CAS  Google Scholar 

  • Yu ZF, Nikolova-Karakashian M, Zhou D, Cheng G, Schuchman EH, Mattson MP (2007b) Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci 15:85–97

    Article  Google Scholar 

  • Zhang X, Cui SS, Wallace AE, Hannesson DK (2002) Corcoran MEJJoNtOJotSfN. Relations between Brain Pathology and Temporal Lobe Epilepsy 22:6052–6061

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Scientific Research Project in Colleges and Universities of Henan Province (Grant No.19A360033) and the Science and Technology Department of Henan Province (Grant No.182102310169, No.182102310540)—the authors are grateful to these institutions for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Y. L. and D. L. conceived and designed the study; T. W. performed the experiments and drafted the manuscript; J. Z. and M. Y. contributed to acquisition of data or analysis data; J. G. was responsible for editing; Y. L. and D. L. reviewed the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Duolu Li or Ying Li.

Ethics declarations

Ethics Approval

The animal experiments were approved by the Institutional Animal Care and Animal Ethics Committee of Zhengzhou University.

Consent for Publication

All authors agreed to publication.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1920 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, J., Yang, M. et al. Lipidomics Analysis Reveals a Protective Effect of Myriocin on Cerebral Ischemia/Reperfusion Model Rats. J Mol Neurosci 72, 1846–1858 (2022). https://doi.org/10.1007/s12031-022-02014-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-02014-w

Keywords

Navigation