Skip to main content
Log in

Crocin Protects Malathion-Induced Striatal Biochemical Deficits by Inhibiting Apoptosis and Increasing α-Synuclein in Rats’ Striatum

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Long-term exposure to organophosphates might result in neurodegenerative diseases, comprising Parkinson’s disease. Malathion is an organophosphate pesticide with high neurotoxicity. Oxidative stress, apoptosis, and α-synuclein accumulation are important underlying mechanisms in Parkinson’s disease. According to studies, crocin, an active constituent of saffron, has anti-apoptotic, anti-inflammatory, and antioxidant properties. Thus, the effect of crocin on malathion-induced striatal biochemical deficits in rats was investigated in this study. Six groups of male Wistar rats were used: 1. control (normal saline); 2. malathion (100 mg/kg/day, i.p.); 3. crocin (10 mg/kg/day, i.p.) + malathion; 4. levodopa (10 mg/kg/day, i.p.) + malathion; 5. crocin (40 mg/kg/day, i.p.); and 6. polyethylene glycol (PEG) (vehicle of levodopa) groups. The drugs were administered for 28 days. The amounts of Bcl-2, Bax, and caspases 3, 8, and 9 proteins in the striatum were measured by western blotting. Also, the amounts of protein and mRNA level of the α-synuclein in striatum tissue were measured by western blotting and RT-qPCR methods. Malathion induced apoptosis by increasing the amount of Bax/Bcl2 ratio and caspases 3 and 9 proteins in rat striatum tissue. It also increased the protein and mRNA level of α-synuclein in striatal tissue. Co-administration of crocin or levodopa with malathion inhibited the toxic effects of malathion on striatal tissue. Crocin ameliorates the neurotoxic effect of malathion by its anti-apoptotic activity and regulating the expression of proteins involved in Parkinson’s disease pathogenesis. As a result, crocin has the potential to be used as a treatment for malathion-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Agim ZS, Cannon JR (2015) Dietary factors in the etiology of Parkinson’s disease. Biomed Res Int 2015:672838

  • Amro M, Teoh S, Norzana A, Srijit D (2018) The potential role of herbal products in the treatment of Parkinson’s disease. Clin Ter 169:e23–e33

    CAS  PubMed  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero M, Michel P, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch E, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:24–31

    Google Scholar 

  • Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, Zhang B, Yue Z (2020) Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun 11:1–14

    Article  CAS  Google Scholar 

  • Chu Y, Goldman JG, Kelly L, He Y, Waliczek T, Kordower JH (2014) Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease. Neurobiol Dis 69:1–14

    Article  CAS  PubMed  Google Scholar 

  • Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311:1670–1683

    Article  PubMed  CAS  Google Scholar 

  • Delgado EH, Streck EL, Quevedo JL, Dal-Pizzol F (2006) Mitochondrial respiratory dysfunction and oxidative stress after chronic malathion exposure. Neurochem Res 31:1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Dorri SA, Hosseinzadeh H, Abnous K, Hasani FV, Robati RY, Razavi BM (2015) Involvement of brain-derived neurotrophic factor (BDNF) on malathion induced depressive-like behavior in subacute exposure and protective effects of crocin. Iran J Basic Med Sci 18:958–966

    PubMed  PubMed Central  Google Scholar 

  • Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 12:612

    Article  PubMed  PubMed Central  Google Scholar 

  • Erekat NS (2018) Apoptosis and its role in Parkinson’s disease. In: Stoker TB, Greenland JC, editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU): Codon Publications p. 65–82

  • Ghiglieri V, Calabrese V, Calabresi P (2018) Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. Front Neurol 9:295

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadizadeh F, Mohajeri S, Seifi M (2010) Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pak J Biol Sci 13:691–698

    Article  CAS  PubMed  Google Scholar 

  • Hassani FV, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H (2014) Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. DARU J Pharm Sci 22:1–9

    CAS  Google Scholar 

  • Hosseinzadeh H, Karimi G, Niapoor M (2004) Antidepressant effects of Crocus sativus stigma extracts and its constituents, crocin and safranal, in mice. J Medicinal Plants 3:48–58

    Google Scholar 

  • Hosseinzadeh H, Noraei NB (2009) Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Research 23:768–774

    Article  CAS  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA (2012) Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res 26:381–386

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Shamsaie F, Mehri S (2009) Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents, crocin and safranal. Pharmacogn Mag 5:419–424

    Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankovic J, Stacy M (2007) Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs 21:677–692

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S38

    Article  CAS  PubMed  Google Scholar 

  • Khalatbari-Mohseni A, Banafshe HR, Mirhosseini N, Asemi Z, Ghaderi A, Omidi A (2019) The effects of crocin on psychological parameters in patients under methadone maintenance treatment: a randomized clinical trial. Subst Abuse Treat Prev Policy 14:1–8

    Article  Google Scholar 

  • Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693s–1700s

    CAS  PubMed  Google Scholar 

  • Lee JE, Park JH, Shin IC, Koh HC (2012) Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol Appl Pharmacol 263:148–162

    Article  CAS  PubMed  Google Scholar 

  • Lovick TA, Zangrossi H Jr (2021) Effect of estrous cycle on behavior of females in rodent tests of anxiety. Front Psychiatry 12:711065

  • Ma XW, Guo RY (2017) Dose-dependent effect of Curcuma longa for the treatment of Parkinson’s disease. Exp Ther Med 13:1799–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malar DS, Prasanth MI, Brimson JM, Sharika R, Sivamaruthi BS, Chaiyasut C, Tencomnao T (2020) Neuroprotective properties of green tea (Camellia sinensis) in Parkinson’s disease: a review. Molecules 25:3926

    Article  CAS  PubMed Central  Google Scholar 

  • Manning-Boğ AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) α-Synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23:3095–3099

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehri S, Abnous K, Khooei A, Mousavi SH, Shariaty VM, Hosseinzadeh H (2015) Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iran J Basic Med Sci 18:902–908

    PubMed  PubMed Central  Google Scholar 

  • Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H (2012) Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 32:227–235

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh L, Abnous K, Razavi BM, Hosseinzadeh H (2020) Crocin-protected malathion-induced spatial memory deficits by inhibiting TAU protein hyperphosphorylation and antiapoptotic effects. Nutr Neurosci 23:221–236

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh L, Hosseinzadeh H, Abnous K, Razavi BM (2018) Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ Sci Pollut Res 25:4904–4914

    Article  CAS  Google Scholar 

  • Nicot S, Verchère J, Bélondrade M, Mayran C, Bétemps D, Bougard D, Baron T (2019) Seeded propagation of α-synuclein aggregation in mouse brain using protein misfolding cyclic amplification. FASEB J 33:12073–12086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha A, Gupta Y (2017) Study of commonly used organophosphate pesticides that induced oxidative stress and apoptosis in peripheral blood lymphocytes of rats. Hum Exp Toxicol 36:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Oruc S, Gönül Y, Tunay K, Oruc OA, Bozkurt MF, Karavelioğlu E, Bağcıoğlu E, Coşkun KS, Celik S (2016) The antioxidant and antiapoptotic effects of crocin pretreatment on global cerebral ischemia reperfusion injury induced by four vessels occlusion in rats. Life Sci 154:79–86

    Article  CAS  PubMed  Google Scholar 

  • Rahbardar MG, Hosseinzadeh H (2020a) Effects of rosmarinic acid on nervous system disorders: an updated review. Naunyn Schmiedebergs Arch Pharmacol 393:1779–1795

    Article  CAS  Google Scholar 

  • Rahbardar MG, Hosseinzadeh H (2020b) Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci 23:1100–1112

    Google Scholar 

  • Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR (2013) Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med 79:447–451

    Article  CAS  PubMed  Google Scholar 

  • Razavi BM, Hosseini A, Hosseinzadeh H (2021) Antidepressant activity of Crocus sativus L. and its main constituents: a review. The Neuroscience of Depression: Academic Press p. 493–502

  • Razavi BM, Hosseinzadeh H, Abnous K, Khoei A, Imenshahidi M (2016) Protective effect of crocin against apoptosis induced by subchronic exposure of the rat vascular system to diazinon. Toxicol Ind Health 32:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Razavi BM, Hosseinzadeh H, Movassaghi AR, Imenshahidi M, Abnous K (2013) Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem Biol Interact 203:547–555

    Article  CAS  PubMed  Google Scholar 

  • Salama RM, Abdel-Latif GA, Abbas SS, Hekmat M, Schaalan MF (2020) Neuroprotective effect of crocin against rotenone-induced Parkinson's disease in rats: interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 164:107900

  • Sandhu KS, Rana AC (2013) Evaluation of anti parkinson’s activity of Nigella sativa (kalonji) seeds in chlorpromazine induced experimental animal model. Int J Pharm Pharm Sci 22:23

    Google Scholar 

  • Schmitt I, Kaut O, Khazneh H, deBoni L, Ahmad A, Berg D, Klein C, Fröhlich H, Wüllner U (2015) L-dopa increases α-synuclein DNA methylation in Parkinson’s disease patients in vivo and in vitro. Mov Disord 30:1794–1801

    Article  CAS  PubMed  Google Scholar 

  • Shahidani S, Rajaei Z, Alaei H (2019) Pretreatment with crocin along with treadmill exercise ameliorates motor and memory deficits in hemiparkinsonian rats by anti-inflammatory and antioxidant mechanisms. Metab Brain Dis 34:459–468

    Article  CAS  PubMed  Google Scholar 

  • Shaterzadeh-Yazdi H, Samarghandian S, Farkhondeh T (2018) Effects of crocins in the management of neurodegenerative pathologies: a review. Neurophysiology 50:302–308

    Article  Google Scholar 

  • Sherer TB, Kim J-H, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp Neurol 179:9–16

    Article  CAS  PubMed  Google Scholar 

  • Shieh P, Jan C-R, Liang W-Z (2019) The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicology 417:1–14

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Villalba R, Raju D (2009) Striatal spine plasticity in Parkinson’s disease: pathological or not? Parkinsonism Relat Disord 15:S156–S161

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastav S, Fatima M, Mondal AC (2017) Important medicinal herbs in Parkinson’s disease pharmacotherapy. Biomed Pharmacother 92:856–863

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Lu L, Wang Q, Liu H, Xue W, Zhou T, Xu L, Wang K, Wu D, Wei F (2020) Crocin reverses depression-like behavior in Parkinson disease mice via VTA-mPFC pathway. Mol Neurobiol 57:3158–3170

    Article  CAS  PubMed  Google Scholar 

  • Thakur P, Nehru B (2014) Modulatory effects of sodium salicylate on the factors affecting protein aggregation during rotenone induced Parkinson’s disease pathology. Neurochem Int 75:1–10

    Article  CAS  PubMed  Google Scholar 

  • Thanvi B, Lo T (2004) Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgrad Med J 80:452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth C, Brown MS, Furtado S, Suchowersky O, Zochodne D (2008) Neuropathy as a potential complication of levodopa use in Parkinson’s disease. Mov Disord 23:1850–1859

    Article  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Pesticides directly accelerate the rate of α-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 500:105–108

    Article  CAS  PubMed  Google Scholar 

  • Varol S, Başarslan S, Fırat U, Alp H, Uzar E, Arıkanoğlu A, Evliyaoğlu O, Acar A, Yücel Y, Kıbrıslı E (2015) Detection of borderline dosage of malathion intoxication in a rat’s brain. Eur Rev Med Pharmacol Sci 19:2318–2323

    CAS  PubMed  Google Scholar 

  • Venkatesan R, Park YU, Ji E, Yeo E-J, Kim SY (2017) Malathion increases apoptotic cell death by inducing lysosomal membrane permeabilization in N2a neuroblastoma cells: a model for neurodegeneration in Alzheimer’s disease. Cell Death Discov 3:1–10

    Article  Google Scholar 

  • Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol Society 53:S16–S25

    Article  CAS  Google Scholar 

  • Wu B, Song B, Yang H, Huang B, Chi B, Guo Y, Liu H (2013) Central nervous system damage due to acute paraquat poisoning: an experimental study with rat model. Neurotoxicology 35:62–70

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Zhang P, Li J, Liu T, Zhang Y, Wang Q, Zhang J, Lu X, Fan X (2020) Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease. J Pharm Anal 11:220–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeinali M, Zirak MR, Rezaee SA, Karimi G, Hosseinzadeh H (2019) Immunoregulatory and anti-inflammatory properties of Crocus sativus (Saffron) and its main active constituents: a review. Iran J Basic Med Sci 22:334

    PubMed  PubMed Central  Google Scholar 

  • Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ (2018) Striatal synapses, circuits, and Parkinson’s disease. Curr Opin Neurobiol 48:9–16

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Pharmaceutical Research Center and Vice-Chancellor of Research, Mashhad University of Medical Sciences (No: 931316).

Author information

Authors and Affiliations

Authors

Contributions

HH and BMR were supervisors, designed the work, revised it critically for important intellectual content, and approved the version to be published. LM did the experiment and MGR wrote the manuscript.

Corresponding authors

Correspondence to Bibi Marjan Razavi or Hossein Hosseinzadeh.

Ethics declarations

Ethics Approval and Consent to Participate

All animal studies were carried out in accordance with the norms of the Ethics Committee of Mashhad University of Medical Sciences (No: 931316, 15.03.2017).

Consent for Publication

All authors have agreed to the contents and approved the final version for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, L., Ghasemzadeh Rahbardar, M., Razavi, B. et al. Crocin Protects Malathion-Induced Striatal Biochemical Deficits by Inhibiting Apoptosis and Increasing α-Synuclein in Rats’ Striatum. J Mol Neurosci 72, 983–993 (2022). https://doi.org/10.1007/s12031-022-01990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-01990-3

Keywords

Navigation