Skip to main content
Log in

Blunted Amphetamine-induced Reinforcing Behaviors and Transporter Downregulation in Knock-in Mice Carrying Alanine Mutations at Threonine-258 and Serine-259 of Norepinephrine Transporter

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Altered amine transporter function, phosphorylation, and association with interacting proteins are evident in animals with a history of psychostimulant exposure. Our previous studies have shown that the Thr258/Ser259 motif in the norepinephrine transporter (NET) is involved in amphetamine (AMPH)-mediated NET regulation and behavior. However, the neurobiological consequences of in vivo Thr258/Ser259-dependent NET regulation in an intact animal model are unclear. Therefore, we generated a viable construct-valid NET-Thr258Ala/Ser259Ala (NET-T258A/S259A) mouse model using CRISPR/Cas9 technology by replacing Thr258/Ser259 motif with Ala258/Ala259 motif. NET-T258A/S259A mice have a birth rate consistent with Mendelian inheritance ratios. Both male and female homozygous NET-T258A/S259A mice are viable, display normal growth and general health, and exhibit normal body weight (sex-dependent) and total activity in the open field similar to their wild-type (WT) littermates. NET-T258A/S259A mice showed reduced NET function in the prefrontal cortex (PFC) compared to WT mice while NET function in the nucleus accumbens (NAc) remained unchanged. Compared to respective WT counterparts, NET-T258A/S259A males but not females showed significantly reduced locomotor activation in response to acute AMPH administration and significantly reduced AMPH-induced conditioned place preference (CPP). When tested in the males only, acute AMPH administration inhibited NET function and surface expression in the WT NAc but not in the NET-T258A/S259A NAc while AMPH administration inhibited DAT function and surface expression in the NAc of both WT and NET-T258A/S259A mice. Collectively, our findings reveal that the mice carrying the T258A/S259A mutation in NET gene display brain region-specific differences in NET functional expression and blunted response to AMPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data is available in Mendeley data sharing platform. The details on the sources and use of materials will be made available upon request.

References

  • Annamalai B, Mannangatti P, Arapulisamy O, Ramamoorthy S, Jayanthi LD (2010) Involvement of threonine 258 and serine 259 motif in amphetamine-induced norepinephrine transporter endocytosis. J Neurochem 115(1):23–35. https://doi.org/10.1111/j.1471-4159.2010.06898.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annamalai B, Mannangatti P, Arapulisamy O, Shippenberg TS, Jayanthi LD, Ramamoorthy S (2012) Tyrosine phosphorylation of the human serotonin transporter: a role in the transporter stability and function. Mol Pharmacol 81(1):73–85. https://doi.org/10.1124/mol.111.073171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annamalai B, Ragu Varman D, Horton RE, Daws LC, Jayanthi LD, Ramamoorthy S (2020) Histamine receptors regulate the activity, surface expression, and phosphorylation of serotonin transporters. ACS Chem Neurosci 11(3):466–476. https://doi.org/10.1021/acschemneuro.9b00664

    Article  CAS  PubMed  Google Scholar 

  • Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD (1998a) Acute regulation of norepinephrine transport: I. PKC-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. J Pharmacol Exp Ther 287:733–743

    CAS  PubMed  Google Scholar 

  • Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD (1998b) PKC dependent and independent pathways linked to muscarinic acetylcholine receptors in the acute regulation of human norepinephrine transporters. J Pharmacol Exp Ther, submitted

  • Apparsundaram S, Schroeter S, Blakely RD (1998c) Acute regulation of norepinephrine transport. II. PKC-modulated surface expression of human norepinephrine transporter proteins. J Pharmacol Exp Ther 287:744–751

    CAS  PubMed  Google Scholar 

  • Arapulisamy O, Mannangatti P, Jayanthi LD (2013) Regulated norepinephrine transporter interaction with the neurokinin-1 receptor establishes transporter subcellular localization. J Biol Chem 288(40):28599–28610. https://doi.org/10.1074/jbc.M113.472878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker EL, Blakely RD (1995) Norepinephrine and serotonin transporters: molecular targets of antidepressant drugs. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 321–333

    Google Scholar 

  • Bolukbasi MF, Gupta A, Wolfe SA (2016) Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 13(1):41–50. https://doi.org/10.1038/nmeth.3684

    Article  CAS  PubMed  Google Scholar 

  • Bruss M, Wieland A, Bonisch H (1999) Molecular cloning and functional expression of the mouse dopamine transporter. J Neural Transm 106(7–8):657–662

    CAS  PubMed  Google Scholar 

  • Dipace C, Sung U, Binda F, Blakely RD, Galli A (2007) Amphetamine induces a calcium/calmodulin-dependent protein kinase II-dependent reduction in norepinephrine transporter surface expression linked to changes in syntaxin 1A/transporter complexes. Mol Pharmacol 71(1):230–239. https://doi.org/10.1124/mol.106.026690

    Article  CAS  PubMed  Google Scholar 

  • Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, ... Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267. https://doi.org/10.1038/nbt.3026

  • Eriksen J, Jorgensen TN, Gether U (2010) Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. J Neurochem 113(1):27–41. https://doi.org/10.1111/j.1471-4159.2010.06599.x

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Lankupalle J, Thoreson M, Blakely RD (1998) Cloning and chromosomal mapping of the murine norepinephrine transporter. J Neurochem 70:2241–2251

    Article  CAS  Google Scholar 

  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    Article  CAS  Google Scholar 

  • Hay EA, Khalaf AR, Marini P, Brown A, Heath K, Sheppard D, MacKenzie A (2017) An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome. Neuropeptides 64:101–107. https://doi.org/10.1016/j.npep.2016.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell LL, Kimmel HL (2008) Monoamine transporters and psychostimulant addiction. Biochem Pharmacol 75(1):196–217. https://doi.org/10.1016/j.bcp.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  • Howell LL, Negus SS (2014) Monoamine transporter inhibitors and substrates as treatments for stimulant abuse. Adv Pharmacol 69:129–176. https://doi.org/10.1016/B978-0-12-420118-7.00004-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer V, Shen B, Zhang W, Hodgkins A, Keane T, Huang X, Skarnes WC (2015) Off-target mutations are rare in Cas9-modified mice. Nat Methods 12(6):479. https://doi.org/10.1038/nmeth.3408

    Article  CAS  PubMed  Google Scholar 

  • Jacobi AM, Rettig GR, Turk R, Collingwood MA, Zeiner SA, Quadros RM, ... Behlke MA (2017) Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 121–122:16–28. https://doi.org/10.1016/j.ymeth.2017.03.021

  • Jayanthi LD, Annamalai B, Samuvel DJ, Gether U, Ramamoorthy S (2006) Phosphorylation of the norepinephrine transporter at threonine 258 and serine 259 is linked to protein kinase C-mediated transporter internalization. J Biol Chem 281:23326–23340

    Article  CAS  Google Scholar 

  • Jayanthi LD, Ramamoorthy S (2005) Regulation of monoamine transporters: influence of psychostimulants and therapeutic antidepressants. Aaps J 7(3):E728-738

    Article  CAS  Google Scholar 

  • Kaye DM, Wiviott SD, Kobzik L, Kelly RA, Smith TW (1997) S-nitrosothiols inhibit neuronal norepinephrine transport. Am J Physiol 272:H875–H883

    Article  CAS  Google Scholar 

  • Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773. https://doi.org/10.1016/S2215-0366(16)00104-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JJ, Hezghia A, Shaikh SR, Cenido JF, Stark RE, Mann JJ, Sublette ME (2018) Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology 43(11):2165–2179. https://doi.org/10.1038/s41386-018-0133-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macey DJ, Smith HR, Nader MA, Porrino LJ (2003) Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the rhesus monkey. J Neurosci 23(1):12–16

    Article  CAS  Google Scholar 

  • Mannangatti P, Arapulisamy O, Shippenberg TS, Ramamoorthy S, Jayanthi LD (2011) Cocaine up-regulation of the norepinephrine transporter requires threonine 30 phosphorylation by p38 mitogen-activated protein kinase. J Biol Chem 286(23):20239–20250. https://doi.org/10.1074/jbc.M111.226811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannangatti P, NarasimhaNaidu K, Damaj MI, Ramamoorthy S, Jayanthi LD (2015) A role for p38 mitogen-activated protein kinase-mediated threonine 30-dependent norepinephrine transporter regulation in cocaine sensitization and conditioned place preference. J Biol Chem 290(17):10814–10827. https://doi.org/10.1074/jbc.M114.612192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannangatti P, Ragu Varman D, Ramamoorthy S, Jayanthi LD (2021) Neurokinin-1 antagonism distinguishes the role of norepinephrine transporter from dopamine transporter in mediating amphetamine behaviors. Pharmacology 106(11–12):597–605. https://doi.org/10.1159/000518033

    Article  CAS  PubMed  Google Scholar 

  • Mannangatti P, Ramamoorthy S, Jayanthi LD (2018) Interference of norepinephrine transporter trafficking motif attenuates amphetamine-induced locomotor hyperactivity and conditioned place preference. Neuropharmacology 128:132–141. https://doi.org/10.1016/j.neuropharm.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  • Mannangatti P, Sundaramurthy S, Ramamoorthy S, Jayanthi LD (2017) Differential effects of aprepitant, a clinically used neurokinin-1 receptor antagonist on the expression of conditioned psychostimulant versus opioid reward. Psychopharmacology 234(4):695–705. https://doi.org/10.1007/s00213-016-4504-6

    Article  CAS  PubMed  Google Scholar 

  • Matthies HJ, Moore JL, Saunders C, Matthies DS, Lapierre LA, Goldenring JR, ... Galli A (2010) Rab11 supports amphetamine-stimulated norepinephrine transporter trafficking. J Neurosci 30(23):7863–7877. https://doi.org/10.1523/JNEUROSCI.4574-09.2010

  • Nakajima K, Kazuno AA, Kelsoe J, Nakanishi M, Takumi T, Kato T (2016) Exome sequencing in the knockin mice generated using the CRISPR/Cas system. Sci Rep 6:34703. https://doi.org/10.1038/srep34703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveros JC, Franch M, Tabas-Madrid D, San-Leon D, Montoliu L, Cubas P, Pazos F (2016) Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res 44(W1):W267-271. https://doi.org/10.1093/nar/gkw407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragu Varman D, Jayanthi LD, Ramamoorthy S (2021) Glycogen synthase kinase-3ß supports serotonin transporter function and trafficking in a phosphorylation-dependent manner. J Neurochem 156(4):445–464. https://doi.org/10.1111/jnc.15152

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Shippenberg TS, Jayanthi LD (2011) Regulation of monoamine transporters: role of transporter phosphorylation. Pharmacol Ther 129(2):220–238. https://doi.org/10.1016/j.pharmthera.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  • Schank JR, Ventura R, Puglisi-Allegra S, Alcaro A, Cole CD, Liles LC, ... Weinshenker D (2006) Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology 31(10):2221–2230. https://doi.org/10.1038/sj.npp.1301000

  • Sung U, Apparsundaram S, Galli A, Kahlig KM, Savchenko V, Schroeter S, ... Blakely RD (2003) A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity. J Neurosci 23(5):1697–1709

  • Sung U, Jennings JL, Link AJ, Blakely RD (2005) Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins. Biochem Biophys Res Commun 333(3):671–678

    Article  CAS  Google Scholar 

  • Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32(7):1433–1451. https://doi.org/10.1038/sj.npp.1301263

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, ... Caron MG (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3(5):465–471

  • Zaniewska M, Filip M, Przegalinski E (2015) The involvement of norepinephrine in behaviors related to psychostimulant addiction. Curr Neuropharmacol 13(3):407–418

    Article  CAS  Google Scholar 

  • Zhao Z, Baros AM, Zhang HT, Lapiz MD, Bondi CO, Morilak DA, O’Donnell JM (2008) Norepinephrine transporter regulation mediates the long-term behavioral effects of the antidepressant desipramine. Neuropsychopharmacology 33(13):3190–3200. https://doi.org/10.1038/npp.2008.45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the VCU Massey Cancer Center Transgenic/Knockout Mouse Core supported in part by NIH-NCI Cancer Center Support Grant P30 CA016059 for providing the services in generating NET-T258A/S259A knock-in mice. The authors also thank Mutant Mouse/Viral Vector Core of NIH-NIDA Central Virginia Center on Drug Abuse Research Grant P30DA033934 for providing part of the services in creating the NET-T258A/S259A knock-in mouse model.

Funding

This work was supported by the National Institutes of Health grant DA045888 (LDJ).

Author information

Authors and Affiliations

Authors

Contributions

Mark A. Subler and Jolene J. Windle created the NET-T258A/S259A knock-in mice using CRISPR/Cas9 strategy. Durairaj Ragu Varman conducted NET and DAT transport analyses and surface expression experiments and acquired data, performed data analysis, created figures, and cowrote the manuscript. Padmanabhan Mannangatti conducted locomotor activity and CPP experiments and acquired data. Lankupalle D. Jayanthi conceived the project, planned the experiments, performed data analysis, created figures, and drafted the manuscript. Sammanda Ramamoorthy critically reviewed and cowrote the manuscript.

Corresponding author

Correspondence to Lankupalle D. Jayanthi.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures involving the animal experiments were conducted according to National Institutes of Health guide for the Care and Use of Laboratory animals. Virginia Commonwealth University Institutional Animal Care and Use Committee has approved the protocols (AD10000476) of this study. The study does not involve human subjects and hence consent to participate is not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragu Varman, D., Mannangatti, P., Subler, M.A. et al. Blunted Amphetamine-induced Reinforcing Behaviors and Transporter Downregulation in Knock-in Mice Carrying Alanine Mutations at Threonine-258 and Serine-259 of Norepinephrine Transporter. J Mol Neurosci 72, 1965–1976 (2022). https://doi.org/10.1007/s12031-022-01988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-01988-x

Keywords

Navigation