Skip to main content
Log in

Upregulation of Src Family Tyrosine Kinases in the Rat Striatum by Adenosine A2A Receptors

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Adenosine A2A receptors are Golf-coupled receptors and are predominantly expressed in the striatum of mammalian brains. As a mostly postsynaptic receptor, A2A receptors are implicated in the regulation of a variety of intracellular signaling pathways in striatopallidal output neurons and are linked to the pathogenesis of various neuropsychiatric and neurological disorders. This study investigated the possible role of A2A receptors in the modulation of the Src family kinase (SFK) in the adult rat striatum. In acutely prepared striatal slices, adding the A2A receptor agonist PSB-0777 induced a significant increase in phosphorylation of SFKs at a conserved autophosphorylation site (Y416) in the caudate putamen (CPu). This increase was also seen in the nucleus accumbens (NAc). Another A2A agonist CGS-21680 showed the similar ability to elevate SFK Y416 phosphorylation in the striatum. Treatment with the A2A receptor antagonist KW-6002 blocked the effect of PSB-0777 on SFK Y416 phosphorylation. In addition, PSB-0777 enhanced kinase activity of two key SFK members (Src and Fyn) immunoprecipitated from the striatum. These data demonstrate a positive linkage from A2A receptors to the SFK signaling pathway in striatal neurons. Activation of A2A receptors leads to the upregulation of phosphorylation of SFKs (Src and Fyn) at an activation-associated autophosphorylation site and kinase activity of these SFK members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data sets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alexander SP, Reddington M (1989) The cellular localization of adenosine receptors in rat neostriatum. Neuroscience 28:645–651

    Article  CAS  PubMed  Google Scholar 

  • Aubert I, Ghorayeb I, Normand E, Bloch B (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418:22–32

    Article  CAS  PubMed  Google Scholar 

  • Bertran-Gonzalez J, Herve D, Girault JA, Valjent E (2010) What is the degree of segregation between striatonigral and striatopallidal projections? Front Neuroanat 4:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-signaling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434

    Article  CAS  PubMed  Google Scholar 

  • Canals M, Angulo E, Casado V, Canela EI, Mallol J, Vinals F, Staines W, Tinner B, Hillion J, Agnati L, Fuxe K, Ferre S, LIuis C, Franco R, (2005) Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. J Neurochem 92:337–348

    Article  CAS  PubMed  Google Scholar 

  • El-Tayeb A, Michael S, Abdelrahman A, Behrenswerth A, Gollos S, Nieber K, Müller CE (2011) Development of polar adenosine A2A receptor agonists for inflammatory bowel disease: synergism with A2B antagonists. ACS Med Chem Lett 2:890–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Famous KR, Kumaresan V, Sadri-Vakili G, Schmidt HD, Mierke D, Cha JH, Pierce RC (2008) Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking. J Neurosci 28:11061–11070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferre S, Bonaventura J, Zhu W, Hatcher-Solis C, Taura J, Quiroz C, Cai NS, Moreno E, Casado-Anguera V, Kravitz AV, Thompson KR, Tomasi DG, Navarro G, Cordomi A, Pardo L, Lluis C, Dessauer CW, Volkow ND, Casado V, Ciruela F, Logothetis DE, Zwilling D (2018) Essential control of the function of the striatopallidal neuron by pre-coupled complexes of adenosine A2A-dopamine D2 receptor heterotetramers and adenylyl cyclase. Front Pharmacol 9:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferre S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  CAS  PubMed  Google Scholar 

  • Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM, Reppert SM (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Mol Brain Res 14:186–195

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  • Fuxe K, Ferre S, Genedani S, Franco R, Agnati LF (2007) Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 92:210–217

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Marcellino D, Dorroto-Escuela DO, Guescini M, Fernandez-Duenas V, Tanganelli S, Rivera A, Ciruela F, Agnati LF (2010) Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:e18–e42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Golembiowska K, Zylewska A (1997) Adenosine receptors — the role in modulation of dopamine and glutamate release in the rat striatum. Pol J Pharmacol 49:317–322

    CAS  PubMed  Google Scholar 

  • Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, Yu X (2012) The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J 279:20–28

    Article  CAS  PubMed  Google Scholar 

  • Han BR, Lin SC, Espinosa K, Thorne PR, Vlajkovic SM (2019) Inhibition of the adenosine A2A receptor mitigates excitotoxic injury in organoptypic tissue cultures of the rat cochlea. Cells 8:877

    Article  CAS  PubMed Central  Google Scholar 

  • Harper LK, Beckett SR, Marsden CA, McCreary AC, Alexander SPH (2006) Effects of the A2A adenosine receptor antagonist KW6002 in the nucleus accumbens in vitro and in vivo. Pharmacol Biochem Behav 83:114–121

    Article  CAS  PubMed  Google Scholar 

  • Heidinger V, Manzerra P, Wang XQ, Strasser U, Yu SP, Choi DW, Behrens MM (2002) Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 22:5452–5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hettinger BD, Lee A, Linden J, Rosin DL (2001) Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABEergic neurons in the striatum. J Comp Neurol 431:331–346

    Article  CAS  PubMed  Google Scholar 

  • Jin DZ, Guo ML, Xue B, Fibuch EE, Choe ES, Mao LM, Wang JQ (2013) Phosphorylation and feedback regulation of metabotropic glutamate receptor 1 by calcium/calmodulin-dependent protein kinase II. J Neurosci 33:3402–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin DZ, Mao LM, Wang JQ (2017) An essential role of Fyn in the modulation of metabotropic glutamate receptor 1 in neurons. eNeuro 4:ENEURO.0096–17.2017.

  • Jin DZ, Mao LM, Wang JQ (2019) Amphetamine activates non-receptor tyrosine kinase Fyn and stimulates ERK phosphorylation in the rat striatum in vivo. Eur J Pharmacol 843:45–54

    Article  CAS  PubMed  Google Scholar 

  • Kalia LV, Gingrich JR, Salter MW (2004) Src in synaptic transmission and plasticity. Oncogene 23:8007–8016

    Article  CAS  PubMed  Google Scholar 

  • Kull B, Svenningsson P, Fredholm BB (2000) Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Mol Pharmacol 58:771–777

    Article  CAS  PubMed  Google Scholar 

  • Le Moine C, Svenningsson P, Fredholm BB, Bloch B (1997) Dopamine-adenosine interactions in the striatum and the globus pallidus: inhibition of striatopallidal neurons through either D2 or A2A receptors enhances D1 receptor-mediated effects on c-fos expression. J Neurosci 17:8038–8048

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y (2017) IGF-1-involved negative feedback of NR2B NMDA subunits protects cultured hippocampal neurons against NMDA-induced excitotoxicity. Mol Neurobiol 54:684–696

    Article  CAS  PubMed  Google Scholar 

  • Lindskog M, Svenningsson P, Fredholm BB, Greengard P, Fisone G (1999) Activation of dopamine D2 receptors decreases DARPP-32 phosphorylation in striatonigral and striatopallidal projection neurons via different mechanisms. Neuroscience 88:1005–1008

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Mao LM, Zhang GC, Papasian CJ, Fibuch EE, Lan HX, Zhou HF, Xu M, Wang JQ (2009) Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61:425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Hou Y, Zhang Y, Ma T, Shao W, Xiao C (2020) Adenosine A2A receptor agonist PSB-0777 modulates synaptic proteins and AMPA receptor expression in a dose- and time-dependent manner in rat primary cortical neurons. Biol Pharm Bull 43:1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Mao LM, Faris HJ, Wang JQ (2018) Muscarinic acetylcholine receptors inhibit Fyn activity in the rat striatum in vivo. J Mol Neurosci 64:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao LM, Geosling R, Penman B, Wang JQ (2017) Local substrates of non-receptor tyrosine kinases at synaptic sites in neurons. Sheng Li Xue Bao 69:657–665

    PubMed  PubMed Central  Google Scholar 

  • Mao L, Wang JQ (2016) Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo. J Neurosci Res 94:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller CE, Baqi Y, Namasivayam V (2020) Agonists and antagonists for purinergic receptors. Methods Mol Biol 2041:45–64

    Article  PubMed  Google Scholar 

  • Nishizaki T, Nagai K, Nomura T, Tada H, Kanno T, Tozaki H, Li XX, Kondoh T, Kodama N, Takahashi E, Sakai N, Tanaka K, Saito N (2002) A new neuromodulatory pathway with a glial contribution mediated via A(2a) adenosine receptors. Glia 39:133–147

    Article  CAS  PubMed  Google Scholar 

  • Okada M (2012) Regulation of the Src family kinase by Csk. Int J Biol Sci 8:1385–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi H, Murata Y, Okazawa H, Matozaki T (2011) Src family kinases: modulators of neurotransmitter receptor function and behavior. Trends Neurosci 34:629–637

    Article  CAS  PubMed  Google Scholar 

  • Pinna A, Wardas J, Cristalli G, Morelli M (1997) Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas. Brain Res 759:41–49

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Betto P, Reggio R, Ricciarello G (1995) Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur J Pharmacol 287:215–217

    Article  CAS  PubMed  Google Scholar 

  • Quarta D, Ferre S, Solinas M, You ZB, Hockemeyer J, Popoli P, Goldberg SR (2004) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Rajani V, Sengar AS, Salter MW (2021) Src and Fyn regulation of NMDA receptors in health and disease. Neuropharmacology 193:108615.

  • Roskoski R Jr (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sahin B, Galdi S, Hendrick J, Greene RW, Snyder GL, Bibb JA (2007) Evaluation of neuronal phosphoproteins as effectors of caffeine and mediators of striatal adenosine A2A receptor signaling. Brain Res 1129:1–14

    Article  CAS  PubMed  Google Scholar 

  • Schenone S, Brullo C, Musumeci F, Biava M, Falchi F, Botta M (2011) Fyn kinase in brain diseases and cancer: the search for inhibitors. Curr Med Chem 18:2921–2942

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferre S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiffmann SN, Jacobs O, Vanderhaeghen JJ (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 57:1062–1067

    Article  CAS  PubMed  Google Scholar 

  • Schmitt JM, Stork PJ (2002) PKA phosphorylation of Src mediates cAMP’s inhibition of cell growth via Rap1. Mol Cell 9:85–94

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signaling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    Article  CAS  PubMed  Google Scholar 

  • Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V (2014) Adenosine receptors: expression, function and regulation. Int J Mol Sci 15:2024–2052

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimada J, Koike N, Nonaka H, Shiozaki S, Yanagawa K, Kanda T, Kobayashi H, Ichimura M, Nakamura J, Kase H, Suzuki F (1997) Adenosine A2A antagonists with potent anti-cataleptic activity. Bioorg Med Chem Lett 7:2349–2352

    Article  CAS  Google Scholar 

  • Svenningsson P, Le Moine C, Aubert I, Burbaud P, Fredhom BB, Bloch B (1998a) Cellular distribution of adenosine A2A receptor mRNA in the primate striatum. J Comp Neurol 399:229–240

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Lindskog M, Rognoni F, Fredholm BB, Greengard P, Fisone G (1998b) Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons. Neuroscience 84:223–228

    Article  CAS  PubMed  Google Scholar 

  • Trepanier CH, Jackson MF, MacDonald JF (2012) Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J 279:12–19

    Article  CAS  PubMed  Google Scholar 

  • Uematsu K, Futter M, Hsieh-Wilson LC, Higashi H, Maeda H, Nairn AC, Greengard P, Nishi A (2005) Regulation of spinophilin Ser94 phosphorylation in neostriatal neurons involves both DARPP-32-dependent and independent pathways. J Neurochem 95:1642–1652

    Article  CAS  PubMed  Google Scholar 

  • Wu HY, Hsu FC, Gleichman AJ, Baconguis I, Coulter DA, Lynch DR (2007) Fyn-mediated phosphorylation of NR2B Tyr-1336 controls calpain-mediated NR2B cleavage in neurons and heterologous systems. J Biol Chem 282:20075–20087

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Mao LM, Choe ES, Wang JQ (2017) Synaptic ERK2 phosphorylates and regulates metabotropic glutamate receptor 1 in vitro and in neurons. Mol Neurobiol 54:7156–7170

    Article  CAS  PubMed  Google Scholar 

  • Yang HB, Yang X, Cao J, Li S, Liu YN, Suo ZW, Cui HB, Guo Z, Hu XD (2011) cAMP-dependent protein kinase activated Fyn in spinal dorsal horn to regulate NMDA receptor function during inflammatory pain. J Neurochem 116:93–104

    Article  CAS  PubMed  Google Scholar 

  • Yeo MG, Oh HJ, Cho HS, Chun JS, Marcantonio EE, Song WK (2011) Phosphorylation of Ser 21 in Fyn regulates its kinase activity, focal adhesion targeting, and is required for cell migration. J Cell Physiol 226:236–247

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Nagai T, Ahammad RU, Kuroda K, Nakamuta S, Nakano T, Yukinawa N, Funahashi Y, Yamahashi Y, Amano M, Yoshimoto J, Yamada K, Kaibuchi K (2019) Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochem Int 122:8–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank Dr. Daozhong Jin and Dr. Hunter J. Faris for their technical assistance.

Funding

This work was supported by the NIH grant R01MH061469 (J.Q.W.).

Author information

Authors and Affiliations

Authors

Contributions

LMM and JQW designed the study. LMM and SD performed the experiments and collected the data. LMM, SD, and JQW analyzed data. LMM and JQW drafted the manuscript. All authors reviewed and edited the manuscript and approved the final manuscript.

Corresponding author

Correspondence to John Q. Wang.

Ethics declarations

Ethics Approval

The animal protocol was approved by the Institutional Animal Care and Use Committee (protocol no.: 1006).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, LM., Demehri, S. & Wang, J.Q. Upregulation of Src Family Tyrosine Kinases in the Rat Striatum by Adenosine A2A Receptors. J Mol Neurosci 72, 802–811 (2022). https://doi.org/10.1007/s12031-021-01961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01961-0

Keywords

Navigation