Skip to main content
Log in

Investigation of the Influence of TBP CAG/CAA Repeats in Conjunction with HTT CAG Repeats on Huntington’s Disease Age at Onset in a Brazilian Sample

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a genetic neurodegenerative progressive and fatal disease characterized by motor disorder, cognitive impairment, and behavioral problems, caused by expanded repeats of CAG trinucleotides in the HTT gene. The aim of this study was to investigate the influence of TBP gene CAG/CAA repeats in conjunction with HTT gene CAG repeats, on the age at HD onset in Brazilian individuals. Individuals diagnosed as molecularly negative for HD presented 29–39 TBP CAG/CAA. Their most frequent allele had 36 repeats. In individuals diagnosed as molecularly positive for HD, a range of 25–40 TBP CAG/ CAA was found. The most frequent TBP allele had 38 repeats. We also conducted TBP direct Sanger sequencing of some samples which demonstrated other four TBP structures different from the basic TBP structure and others reported in the literature. The HTT expanded CAG and TBP CAG/CAA repeat sizes jointly explained 66% of the age at onset (AO) in our HD patients. The strongest variable in the model associated with AO was the number of expanded HTT CAG repeats. The difference between the association of HD AO with HTT expanded CAG together with TBP CAG/CAA and the association of HD AO with HTT expanded CAG was 0.001 (∆R2). Therefore, we found a weak association (0.1%) of TBP CAG/CAA repeats on HD AO, if any.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostinho LA, Rocha CF, Medina-Acosta E, Barboza HN, da Silva AF, Pereira SP, da Silva Idos S, Paradela ER, Figueiredo AL, Nogueira Ede M, Alvarenga RM, Hernan Cabello P, dos Santos SR, Paiva CL (2012) Haplotype analysis of the CAG and CCG repeats in 21 Brazilian families with Huntington’s disease. J Hum Genet 57(12):796–803

    Article  CAS  Google Scholar 

  • Andrew SE, Goldberg YP, Theilmann J, Zeisler J, Hayden MR (1994) A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing Hum Mol Genet 3:65-67. https://doi.org/10.1093/hmg/3.1.65

  • Bassi S, Tripathi T, Monziani A, Di Leva F, Biagioli M (2017) Epigenetics of Huntington’s Disease. Adv Exp Med Biol 978:277–299

    Article  CAS  Google Scholar 

  • Cha JH (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23(9):387–392

    Article  CAS  Google Scholar 

  • Chen Z, Zheng C, Long Z, Cao L, Li X, Shang H, Yin X, Zhang B, Liu J, Ding D, Peng Y, Wang C, Peng H, Ye W, Qiu R, Pan Q, Xia K, Chen S, Sequeiros J, Ashizawa T, Klockgether T, Tang B, Jiang H (2016) Chinese Clinical Research Cooperative Group for Spinocerebellar. (CAG)n loci as genetic modifiers of age-at-onset in patients with Machado-Joseph disease from mainland China. Brain England 139:e41

  • Djousse L, Knowlton B, Hayden M, Almqvist EW, Brinkman R, Ross C, Margolis R, Rosenblatt A, Durr A, Dode C, Morrison PJ, Novelletto A, Frontali M, Trent RJ, McCusker E, Gomez-Tortosa E, Mayo D, Jones R, Zanko A, Nance M, Abramson R, Suchowersky O, Paulsen J, Harrison M, Yang Q, Cupples LA, Gusella JF, MacDonald ME, Myers RH (2003) Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet A 119a(3):279–282

  • Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9(9):885–894

    Article  CAS  Google Scholar 

  • Fujigasaki H et al (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia Brain 124:1939-1947. https://doi.org/10.1093/brain/124.10.1939

  • Goold R, Flower M, Moss DH, Medway C, Wood-Kaczmar A, Andre R, Farshim P, Bates GP, Holmans P, Jones L, Tabrizi SJ (2019) FAN1 modifies Huntington’s disease progression by stabilizing the expanded HTT CAG repeat. Hum Mol Genet 28(4):650–661

    Article  CAS  Google Scholar 

  • Gostout B, Liu Q, Sommer SS (1993) Cryptic repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet 52(6):1182–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gusella JF, MacDonald ME (2009) Huntington’s disease: the case for genetic modifiers. Genome Med 1(8):80

    Article  Google Scholar 

  • Gusella JF, MacDonald ME, Lee JM (2014) Genetic modifiers of Huntington’s disease. Mov Disord 29(11):1359–1365

    Article  CAS  Google Scholar 

  • Hmida-Ben Brahim D, Chourabi M, Ben Amor S, Harrabi I, Trabelsi S, Haddaji-Mastouri M, Gribaa M, Sassi S, Gahbiche FE, Lamouchi T, Mougou-Zereli S, Ben Ammou S, Saad A (2014) Modulation at age of onset in tunisian huntington disease patients: implication of new modifier genes. Genet Res Int 210418

  • Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet 24(4):217–233

    Article  CAS  Google Scholar 

  • Imbert G, Trottier Y, Beckmann J, Mandel JL (1994) The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics 21(3):667–668

    Article  CAS  Google Scholar 

  • Kay C, Collins JA, Caron NS, Agostinho LA, Findlay-Black H, Casal L, Sumathipala D, Dissanayake VHW, Cornejo-Olivas M, Baine F, Krause A, Greenberg JL, Paiva CLA, Squitieri F, Hayden MR (2019) A comprehensive haplotype-targeting strategy for allele-specific HTT suppression in Huntington disease. Am J Hum Genet 105(6):1112–1125

    Article  CAS  Google Scholar 

  • Klockgether T, Evert B (1998) Genes involved in hereditary ataxias. Trends Neurosci 21(9):413–418

    Article  CAS  Google Scholar 

  • Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease?. Hum Mol Genet 8(11):2047–2053

    Article  CAS  Google Scholar 

  • Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3(2):157–163

    Article  CAS  Google Scholar 

  • Li SH, Cheng AL, Zhou H, Lam S, Rao M, Li H, Li XJ (2002) Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 22(5):1277–1287

    Article  CAS  Google Scholar 

  • Marti E (2016) RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol 26(6):779–786

    Article  CAS  Google Scholar 

  • Myers RH, MacDonald ME, Koroshetz WJ, Duyao MP, Ambrose CM, Taylor SA, Barnes G, Srinidhi J, Lin CS, Whaley WL et al (1993) De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nat Genet 5(2):168–173

    Article  CAS  Google Scholar 

  • Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10(14):1441–1448

    Article  CAS  Google Scholar 

  • Nalavade R, Griesche N, Ryan DP, Hildebrand S, Krauss S (2013) Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis 4:e752

  • Ohi K, Hashimoto R, Yasuda Y, Kiribayashi M, Iike N, Yoshida T, Azechi M, Ikezawa K, Takahashi H, Morihara T, Ishii R, Tagami S, Iwase M, Okochi M, Kamino K, Kazui H, Tanaka T, Kudo T, Takeda M (2009) TATA box-binding protein gene is associated with risk for schizophrenia, age at onset and prefrontal function. Genes Brain Behav 8(4):473–480

    Article  CAS  Google Scholar 

  • Orr HT (2012) Polyglutamine neurodegeneration: expanded glutamines enhance native functions. Curr Opin Genet Dev 22(3):251–255

    Article  CAS  Google Scholar 

  • Reid SJ, Whittaker DJ, Greenwood D, Snell RG (2009) A splice variant of the TATA-box binding protein encoding the polyglutamine-containing N-terminal domain that accumulates in Alzheimer’s disease. Brain Res 1268:190–199. https://doi.org/10.1016/j.brainres.2009.03.004

    Article  CAS  Google Scholar 

  • Rubinsztein DC, Leggo J, Chiano M, Dodge A, Norbury G, Rosser E, Craufurd D (1997) Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci U S A 94(8):3872–3876

    Article  CAS  Google Scholar 

  • Rubinsztein DC, Leggo J, Crow TJ, DeLisi LE, Walsh C, Jain S, Paykel ES (1996) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia and bipolar affective disorder. Am J Med Genet 67(5):495–498

    Article  CAS  Google Scholar 

  • Silveira I et al. (2002) Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus Arch Neurol 59:623-629. https://doi.org/10.1001/archneur.59.4.623

  • Stuitje G, van Belzen MJ, Gardiner SL, van Roon-Mom WMC, Boogaard MW, RIotEHD Network, Tabrizi SJ, Roos RAC, Aziz NA (2017) Age of onset in Huntington’s disease is influenced by CAG repeat variations in other polyglutamine disease-associated genes. Brain England 140:e42

  • Tezenas du Montcel S, Durr A, Bauer P, Figueroa KP, Ichikawa Y, Brussino A, Forlani S, Rakowicz M, Schols L, Mariotti C, van de Warrenburg BP, Orsi L, Giunti P, Filla A, Szymanski S, Klockgether T, Berciano J, Pandolfo M, Boesch S, Melegh B, Timmann D, Mandich P, Camuzat A, Goto J, Ashizawa T, Cazeneuve C, Tsuji S, Pulst SM, Brusco A, Riess O, Brice A, Stevanin G (2014) Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 137(Pt 9):2444–2455

    Article  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983

    Article  Google Scholar 

  • Tomiuk J, Bachmann L, Bauer C, Rolfs A, Schols L, Roos C, Zischler H, Schuler MM, Bruntner S, Riess O, Bauer P (2007) Repeat expansion in spinocerebellar ataxia type 17 alleles of the TATA-box binding protein gene: an evolutionary approach. Eur J Hum Genet 15(1):81–87

    Article  CAS  Google Scholar 

  • van Roon-Mom WM, Reid SJ, Faull RL, Snell RG (2005) TATA-binding protein in neurodegenerative disease. Neuroscience 133(4):863–872

    Article  Google Scholar 

  • van Roon-Mom WM, Reid SJ, Jones AL, MacDonald ME, Faull RL, Snell RG (2002) Insoluble TATA-binding protein accumulation in Huntington’s disease cortex. Brain Res Mol Brain Res 109(1–2):1–10

    Article  Google Scholar 

  • Vuono R, Winder-Rhodes S, de Silva R, Cisbani G, Drouin-Ouellet J, Spillantini MG, Cicchetti F, Barker RA (2015) The role of tau in the pathological process and clinical expression of Huntington’s disease. Brain 138(Pt 7):1907–1918

    Article  Google Scholar 

  • Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts SA, Gayan J, Brocklebank D, Cherny SS, Cardon LR, Gray J, Dlouhy SR, Wiktorski S, Hodes ME, Conneally PM, Penney JB, Gusella J, Cha JH, Irizarry M, Rosas D, Hersch S, Hollingsworth Z, MacDonald M, Young AB, Andresen JM, Housman DE, De Young MM, Bonilla E, Stillings T, Negrette A, Snodgrass SR, Martinez-Jaurrieta MD, Ramos-Arroyo MA, Bickham J, Ramos JS, Marshall F, Shoulson I, Rey GJ, Feigin A, Arnheim N, Acevedo-Cruz A, Acosta L, Alvir J, Fischbeck K, Thompson LM, Young A, Dure L, O’Brien CJ, Paulsen J, Brickman A, Krch D, Peery S, Hogarth P, Higgins DS Jr, Landwehrmeyer B (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 101(10):3498–3503

    Article  CAS  Google Scholar 

  • Wright GEB, Collins JA, Kay C, McDonald C, Dolzhenko E, Xia Q, Becanovic K, Drogemoller BI, Semaka A, Nguyen CM, Trost B, Richards F, Bijlsma EK, Squitieri F, Ross CJD, Scherer SW, Eberle MA, Yuen RKC, Hayden MR (2019) Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am J Hum Genet 104(6):1116–1126

    Article  CAS  Google Scholar 

  • Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Li SN, Chen CM (2005) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm (vienna) 112(4):539–546

    Article  CAS  Google Scholar 

  • Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 9(3):160–164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks are due to the DNA Sequencing and Fragment Analysis Platform of IOC/FIOCRUZ/RJ and to the Centre for Molecular Medicine and Therapeutics (UBC), Vancouver, Canada, for the help with DNA sequencing. We also thank Dr. Suely Rodrigues dos Santos, Dr. Mariana Spitz, Dr. João Santos Pereira, and Dr. Luiz Felipe Vasconcellos for the referral of some patients, as well as the Brazilian Huntington’s Disease Association (ABH). Finally, we thank all the patients and their families for participating in this investigation.

Funding

This work was supported by CAPES (scholarships for I.S.S., T.A.A., and L.A.A. during their post-graduate studies), FAPERJ (grant no. E-26/010.000956/2016 to C.L.A.P), UNIRIO, and FINEP.

Author information

Authors and Affiliations

Authors

Contributions

Agostinho, Da Silva and Apolinário were responsible for the experiments. All authors contributed to the result analysis, statistical analysis, and wrote the manuscript. Agostinho and Paiva reviewed the final version of the article.

Corresponding author

Correspondence to Luciana de Andrade Agostinho.

Ethics declarations

Ethics Approval

This study was approved by the HUGG Research Ethics Committee, Rio de Janeiro, Brazil, under the number CAAE 26387113.1.0000.5258.

Consent to Participate

All the participants in this investigation signed the “Informed Consent” form.

Consent for Publication

All participants gave written informed consent for publication in journal article form, as long as information was anonymized.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, I.d.S., Apolinário, T.A., de Andrade Agostinho, L. et al. Investigation of the Influence of TBP CAG/CAA Repeats in Conjunction with HTT CAG Repeats on Huntington’s Disease Age at Onset in a Brazilian Sample. J Mol Neurosci 72, 1116–1124 (2022). https://doi.org/10.1007/s12031-021-01938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01938-z

Keywords

Navigation