Skip to main content

Advertisement

Log in

Integration of Imaging Genomics Data for the Study of Alzheimer's Disease Using Joint-Connectivity-Based Sparse Nonnegative Matrix Factorization

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Imaging genetics reveals the connection between microscopic genetics and macroscopic imaging, enabling the identification of disease biomarkers. In this work, we make full use of prior knowledge that has significant reference value for investigating the correlation between the brain and genetics to explore more biologically substantial biomarkers. In this paper, we propose joint-connectivity-based sparse nonnegative matrix factorization (JCB-SNMF). The algorithm simultaneously projects structural magnetic resonance imaging (sMRI), single-nucleotide polymorphism sites (SNPs), and gene expression data onto a common feature space, where heterogeneous variables with large coefficients in the same projection direction form a common module. In addition, the connectivity information for each region of the brain and genetic data are added as prior knowledge to identify regions of interest (ROIs), SNPs, and gene-related risks related to Alzheimer's disease (AD) patients. GraphNet regularization increases the anti-noise performance of the algorithm and the biological interpretability of the results. The simulation results show that compared with other NMF-based algorithms (JNMF, JSNMNMF), JCB-SNMF has better anti-noise performance and can identify and predict biomarkers closely related to AD from significant modules. By constructing a protein–protein interaction (PPI) network, we identified SF3B1, RPS20, and RBM14 as potential biomarkers of AD. We also found some significant SNP-ROI and gene–ROI pairs. Among them, two SNPs rs4472239 and rs11918049 and three genes KLHL8, ZC3H11A, and OSGEPL1 may have effects on the gray matter volume of multiple brain regions. This model provides a new way to further integrate multimodal impact genetic data to identify complex disease association patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

sMRI, SNPs, and gene expression data of patients with Alzheimer disease and controls were downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/).

References

  • Abel ME et al (2020) KEOPS complex expression in the frontal cortex in major depression and schizophrenia. The world journal of biological psychiatry: The official journal of the World Federation of Societies of Biological Psychiatry 1–10. https://doi.org/10.1080/15622975.2020.1821917

  • Carbonell F, Charil A, Zijdenbos AP, Evans AC, Bedell BJ (2014) Alzheimer's Disease Neuroimaging Initiative. Hierarchical multivariate covariance analysis of metabolic connectivity. J Cereb Blood Flow Metab. 34(12):1936–43. https://doi.org/10.1038/jcbfm.2014.165. Epub Oct 8. PMID: 25294129; PMCID: PMC4269748

  • Cooley SA, Cabeen RP, Laidlaw DH, Conturo TE, Lane EM, Heaps JM, Bolzenius JD, Baker LM, Salminen LE, Scott SE, Paul RH (2015) Posterior brain white matter abnormalities in older adults with probable mild cognitive impairment. J Clin Exp Neuropsychol. 37(1):61–9. https://doi.org/10.1080/13803395.2014.985636. Epub 2014 Dec 18. PMID: 25523313; PMCID: PMC4355053

  • Cruz-Rivera YE, Perez-Morales J, Santiago YM, Gonzalez VM, Morales L, Cabrera-Rios M, Isaza CE (2018) A selection of important genes and their correlated behavior in Alzheimer's Disease. J Alzheimers Dis : JAD (65)1:193–205. https://doi.org/10.3233/JAD-170799

  • D’Antonio F, Di Vita A, Zazzaro G, Brusà E, Trebbastoni A, Campanelli A, Ferracuti S, de Lena C, Guariglia C, Boccia M (2019) Psychosis of Alzheimer’s Disease: Neuropsychological and neuroimaging longitudinal study. Int J Geriatr Psychiatry 34(11):1689–1697. https://doi.org/10.1002/gps.5183. Epub 2019 Aug 14 PMID: 31368183

    Article  PubMed  Google Scholar 

  • Deng J, Kong W, Wang S, Mou X, Zeng W (2018) Prior Knowledge Driven Joint NMF Algorithm for ceRNA Co-Module Identification. International journal of biological sciences (14)13:1822–1833. 19 Oct. https://doi.org/10.7150/ijbs.27555

  • Deng J, Zeng W, Luo S, Kong W, Shi Y, Li Y, Zhang H (2021) Integrating multiple genomic imaging data for the study of lung metastasis in sarcomas using multi-dimensional constrained joint non-negative matrix factorization. Inf Sci 576:24-36. ISSN 0020-0255. https://doi.org/10.1016/j.ins.2021.06.058

  • Deng J, Zeng W, Kong W, Shi Y, Mou X, Guo J (2020) Multi-constrained joint non-negative matrix factorization with application to imaging genomic study of lung metastasis in soft tissue sarcomas. IEEE Trans Biomed Eng 67(7):2110–2118. https://doi.org/10.1109/TBME.2019.2954989

    Article  PubMed  Google Scholar 

  • Donlon TA, Morris BJ (2019) In silico analysis of human renin gene-gene interactions and neighborhood topologically associated domains suggests breakdown of insulators contribute to ageing-associated diseases. Biogerontology (20)6:857–869. https://doi.org/10.1007/s10522-019-09834-1

  • Du L, Huang H, Yan J, Kim S, Risacher SL, Inlow M, Moore JH, Saykin AJ, Shen L (2016) Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method. Bioinformatics (Oxford, England) (32)10:1544–51. https://doi.org/10.1093/bioinformatics/btw033

  • Du L, Liu K, Yao X, Risacher SL, Han J, Saykin AJ, Guo L, Shen L (2020) Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured SCCA approach. Med Image Anal (61):101656. https://doi.org/10.1016/j.media.2020.101656

  • Frost B (2016) Alzheimer's disease: An acquired neurodegenerative laminopathy. Nucleus. 7(3):275–83. https://doi.org/10.1080/19491034.2016.1183859. Epub 2016 May 11. Erratum in: Extra view to: Frost B, Bardai FH,  Feany MB Lamin disfunction mediates neurodegeneration in taupathies. Curr Biol 26(1):129–136. https://doi.org/10.1016/j.cub.2015.11.039. PMID: 27167528; PMCID: PMC4991240

  • Gorski J, Pfeuffer F, Klamroth K (2007) Biconvex sets and optimization with biconvex functions: a survey and extensions. Math Oper Res 66(3):373–407

  • Grosenick L, Klingenberg B, Katovich K, Knutson B, Taylor JE (2013) Interpretable whole-brain prediction analysis with GraphNet. NeuroImage (72):304–21. https://doi.org/10.1016/j.neuroimage.2012.12.062

  • Han P, Caselli RJ, Baxter L, Serrano G, Yin J, Beach TG, Reiman EM, Shi J (2015) Association of pituitary adenylate cyclase-activating polypeptide with cognitive decline in mild cognitive impairment due to Alzheimer disease. JAMA Neurol 72(3):333–339. https://doi.org/10.1001/jamaneurol.2014.3625 PMID:25599520;PMCID:PMC5924703

  • Huang NQ, Jin H, Zhou SY, Shi JS, Jin F (2017) TLR4 is a link between diabetes and Alzheimer’s disease. Behav Brain Res 1(316):234–244. https://doi.org/10.1016/j.bbr.2016.08.047. Epub 2016 Aug 31 PMID: 27591966

    Article  CAS  Google Scholar 

  • Jensen MM, Arvaniti M, Mikkelsen JD, Michalski D, Pinborg LH, Härtig W, Thomsen MS (2015) Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer’s disease. Neurobiol Aging 36(4):1629–1638. https://doi.org/10.1016/j.neurobiolaging.2015.01.001. Epub 2015 Jan 7 PMID: 25680266

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics (oxford, England) 23(12):1495–1502. https://doi.org/10.1093/bioinformatics/btm134

    Article  CAS  Google Scholar 

  • Kim M, Won JH, Youn J, Park H (2020) Joint-connectivity-based sparse canonical correlation analysis of imaging genetics for detecting biomarkers of parkinson's disease. IEEE Trans Med Imaging (39)1:23–34. https://doi.org/10.1109/TMI.2019.2918839

  • Koga AT, Strauss J, Zai C, Remington G, De Luca V (2016) Genome-wide association analysis to predict optimal antipsychotic dosage in schizophrenia: a pilot study. J Neural Trans Suppl (Vienna, Austria : 1996) (123)3:329–38. https://doi.org/10.1007/s00702-015-1472-7

  • Kou X, Chen D, Chen N (2019) Physical activity alleviates cognitive dysfunction of alzheimer’s disease through regulating the mTOR signaling pathway. Int J Mol Sci 20(7):1591. https://doi.org/10.3390/ijms20071591. PMID:30934958;PMCID:PMC6479697

  • Khondoker M, Newhouse S, Westman E, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I, Soininen H, Lovestone S, Dobson R, Simmons A (2015) Addneuromed consortium; alzheimer's disease neuroimaging initiative. Linking genetics of brain changes to alzheimer's disease: sparse whole genome association scan of regional MRI volumes in the ADNI and Add Neuro Med Cohorts. J Alzheimers Dis 45(3):851–64.  https://doi.org/10.3233/JAD-142214. PMID: 25649652

  • Levine ME, Langfelder P, Horvath S (2017) A weighted SNP correlation network method for estimating polygenic risk scores. Methods Mol Biol (Clifton, N.J.) (1613):277–290. https://doi.org/10.1007/978-1-4939-7027-8_10

  • Leong W, Xu W, Wang B, Gao S, Zhai X, Wang C, Gilson E, Ye J, Lu Y (2020) PP2A subunit PPP2R2C is downregulated in the brains of Alzheimer's transgenic mice. Aging (Albany NY). 12(8):6880–6890. https://doi.org/10.18632/aging.103048. Epub 2020 Apr 14. PMID: 32291379; PMCID: PMC7202491

  • Liu Z (2012) Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study, in Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging (8317). https://doi.org/10.1117/12.910864

  • Lu AT, Hannon E, Levine ME, Hao K, Crimmins EM, Lunnon K, Kozlenkov A, Mill J, Dracheva S, Horvath S (2016) Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. Nat Commun 2(7):10561. https://doi.org/10.1038/ncomms10561. PMID:26830004;PMCID:PMC4740877

  • Mahmoudvand H, Sheibani V, Shojaee S, Mirbadie SR, Keshavarz H, Esmaeelpour K, Keyhani AR, Ziaali N (2016) Toxoplasma gondii infection potentiates cognitive impairments of alzheimer's disease in the BALB/c mice. J Parasitol (102)6:629–635. https://doi.org/10.1645/16-28

  • Maphis NM, Jiang S, Binder J, Wright C, Gopalan B, Lamb BT, Bhaskar K (2017) Whole genome expression analysis in a mouse model of tauopathy identifies MECP2 as a possible regulator of tau pathology. Front Mol Neurosci 17(10):69. https://doi.org/10.3389/fnmol.2017.00069. PMID:28367114;PMCID:PMC5355442

  • Mitjans M, Begemann M, Ju A, Dere E, Wüstefeld L, Hofer S, Hassouna I, Balkenhol J, Oliveira B, Van Der Auwera S, Tammer R (2017) Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl Psychiatry (7)10:e1247. https://doi.org/10.1038/tp.2017.213

  • Mohan S, Gupta D (2018) Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie (108):1866–1878. https://doi.org/10.1016/j.biopha.2018.10.019

  • Moon SW, Dinov ID, Kim J, Zamanyan A, Hobel S, Thompson PM, Toga AW (2015) Structural neuroimaging genetics interactions in alzheimer’s disease. J Alzheimers Dis 48(4):1051–1063. https://doi.org/10.3233/JAD-150335. PMID:26444770;PMCID:PMC4730943

  • Narayan PJ, Lill C, Faull R, Curtis MA, Dragunow M (2015) Increased acetyl and total histone levels in post-mortem Alzheimer’s disease brain. Neurobiol Dis 74:281–294. https://doi.org/10.1016/j.nbd.2014.11.023. Epub 2014 Dec 5 PMID: 25484284

    Article  CAS  PubMed  Google Scholar 

  • Nasrabady SE, Rizvi B, Goldman JE, Brickman AM (2018) White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes. Acta neuropathologica communications (6)1:22. https://doi.org/10.1186/s40478-018-0515-3

  • Nguyen TT, Huang JZ, Wu Q, Nguyen TT, Li MJ (2015) Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests. BMC genomics (16)Suppl 2: S5. https://doi.org/10.1186/1471-2164-16-S2-S5

  • Parkhomenko E, Tritchler D, Beyene J (2009) Sparse canonical correlation analysis with application to genomic data integration. Stat Appl Genet Mol Biol (8)1. https://doi.org/10.2202/1544-6115.1406

  • Patak J, Hess JL, Zhang-James Y, Glatt SJ, Faraone SV (2017) SLC9A9 Co-expression modules in autism-associated brain regions. Autism Res 10(3):414–429. https://doi.org/10.1002/aur.1670. Epub 2016 Jul 21 PMID: 27439572

    Article  PubMed  Google Scholar 

  • Peng P, Zhang Y, Ju Y, Wang K, Li G, Vince DC, Wang YP (2020) Group Sparse Joint Non-negative Matrix Factorization on Orthogonal Subspace for Multi-modal Imaging Genetics Data Analysis. IEEE/ACM transactions on computational biology and bioinformatics, PP. Advance online publication. https://doi.org/10.1109/TCBB.2020.2999397

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet (81)3:559–75. https://doi.org/10.1086/519795

  • Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2015) Anatomical regional differences in selenium levels in the human brain. Biol Trace Elem Res 163(1–2):89–96. https://doi.org/10.1007/s12011-014-0160-z. Epub 2014 Nov 21 PMID: 25413879

    Article  CAS  PubMed  Google Scholar 

  • Redolfi A, Manset D, Barkhof F, Wahlund LO, Glatard T, Mangin JF, Frisoni GB (2015) neuGRID Consortium, for the Alzheimer’s Disease Neuroimaging Initiative. Head-to-head comparison of two popular cortical thickness extraction algorithms: a cross-sectional and longitudinal study. PLoS One. 10(3):e0117692. https://doi.org/10.1371/journal.pone.0117692. PMID: 25781983; PMCID: PMC4364123

  • Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acid Res (43)7:e47. https://doi.org/10.1093/nar/gkv007

  • Sathyan S, Barzilai N, Atzmon G, Milman S, Ayers E, Verghese J (2018) Genetic insights into frailty: Association of 9p21–23 locus with frailty. Front Med (5)105. https://doi.org/10.3389/fmed.2018.00105

  • Saykin AJ, Shen L, Foroud TM, Potkin SG, Swaminathan S, Kim S, Risacher SL, Nho K, Huentelman MJ, Craig DW, Thompson PM (2010) Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimer's & dementia : the journal of the Alzheimer's Association (6)3:265–73. https://doi.org/10.1016/j.jalz.2010.03.013

  • Silva B, Niehage C, Maglione M, Hoflack B, Sigrist SJ, Wassmer T, Pavlowsky A, Preat T (2020) Interactions between amyloid precursor protein-like (APPL) and MAGUK scaffolding proteins contribute to appetitive long-term memory in Drosophila melanogaster. J Neurogenet 34(1):92–105. https://doi.org/10.1080/01677063.2020.1712597 (Epub 2020 Jan 22 PMID: 31965876)

    Article  CAS  PubMed  Google Scholar 

  • Sherva R, Tripodis Y, Bennett DA, Chibnik LB, Crane PK, de Jager PL, Farrer LA, Saykin AJ, Shulman JM, Naj A, Green RC (2014) GENAROAD Consortium; Alzheimer's Disease Neuroimaging Initiative; Alzheimer's Disease Genetics Consortium. Genome-wide association study of the rate of cognitive decline in Alzheimer's disease. Alzheimers Dement. 10(1):45–52. https://doi.org/10.1016/j.jalz.2013.01.008. Epub 2013 Mar 25. PMID: 23535033; PMCID: PMC3760995

  • Tao Y, Han Y, Yu L, Wang Q, Leng SX, Zhang H (2020) The predicted key molecules, functions, and pathways that bridge mild cognitive impairment (MCI) and Alzheimer’s Disease (AD). Front Neurol 3(11):233. https://doi.org/10.3389/fneur.2020.00233. PMID:32308643;PMCID:PMC7145962

  • Yan J, Du L, Kim S, Risacher SL, Huang H, Moore JH, Saykin AJ, Shen L (2014) Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm. Bioinformatics (Oxford, England) (30)17:i564–i571. https://doi.org/10.1093/bioinformatics/btu465

  • Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM, La Joie R, Arthur-Bentil SK, Vogel JW, Marks SM, Lehmann M, Rosen HJ, Reed B, Olichney J, Boxer AL, Miller BL, Borys E, Jin LW, Huang EJ, Grinberg LT, DeCarli C, Seeley WW, Jagust W (2015) Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain. 138(Pt 7):2020–33. https://doi.org/10.1093/brain/awv112. Epub 2015 May 6. PMID: 25953778; PMCID: PMC4806716

  • Wang M, Huang TZ, Fang J, Calhoun VD, Wang YP (2020) Integration of imaging (epi)genomics data for the study of Schizophrenia using group sparse joint nonnegative matrix factorization. IEEE/ACM Trans Comput Biol Bioinform vol. (17)5:1671–1681. https://doi.org/10.1109/TCBB.2019.2899568

  • Willette AA, Modanlo N, Kapogiannis D (2015) Alzheimer’s Disease Neuroimaging Initiative. Insulin resistance predicts medial temporal hypermetabolism in mild cognitive impairment conversion to Alzheimer disease. Diabetes. 64(6):1933–40. https://doi.org/10.2337/db14-1507. Epub 2015 Jan 9. PMID: 25576061; PMCID: PMC4439566

  • Wheeler JM, McMillan P, Strovas TJ, Liachko NF, Amlie-Wolf A, Kow RL, Klein RL, Szot P, Robinson L, Guthrie C, Saxton A, Kanaan NM, Raskind M, Peskind E, Trojanowski JQ, Lee VMY, Wang LS, Keene CD, Bird T, Schellenberg GD, Kraemer B (2019) Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Sci Transl Med 11(523):eaao6545. https://doi.org/10.1126/scitranslmed.aao6545. PMID: 31852801; PMCID: PMC7311111

  • White MR, Kandel R, Tripathi S, Condon D, Qi L, Taubenberger J, Hartshorn KL (2014) Alzheimer's associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. PloS One (9)7:e101364. https://doi.org/10.1371/journal.pone.0101364

  • Yamashita KI, Taniwaki Y, Utsunomiya H, Taniwaki T (2014) Cerebral blood flow reduction associated with orientation for time in amnesic mild cognitive impairment and Alzheimer disease patients. J Neuroimaging 24(6):590–594. https://doi.org/10.1111/jon.12096. Epub 2014 Mar 5. PMID: 24593247

  • Zou Y, Zhang WF, Liu HY, Li X, Zhang X, Ma XF, Sun Y, Jiang SY, Ma QH, Xu DE (2017) Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases. Neural Regen Res 12(9):1551–1558. https://doi.org/10.4103/1673-5374.215268. PMID:29090003;PMCID:PMC5649478

  • Zhang S, Liu CC, Li W, Shen H, Laird PW, Zhou XJ (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acid Res (40)19:9379–91. https://doi.org/10.1093/nar/gks725

  • Zhang S, Li Q, Liu J, Zhou XJ (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics (Oxford, England) (27)13:i401–9. https://doi.org/10.1093/bioinformatics/btr206

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Shanghai (No. 18ZR1417200) and National Natural Science Foundation of China (No. 61803257).

Funding

The Natural Science Foundation of Shanghai (No. 18ZR1417200) and the National Natural Science Foundation of China (No. 61803257).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: Kai Wei and Wei Kong. Acquisition, analysis, and interpretation of data: Kai Wei, Shuaiqun Wang, and Wei Kong. Statistical analysis: Kai Wei. Drafting of the manuscript: Kai Wei. Manuscript revision for important intellectual content: Wei Kong. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Wei Kong.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors; therefore, the ethical approval and consent to participate are not applicable.

Consent for publication

The authors have consented to publication of this article.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Kong, W. & Wang, S. Integration of Imaging Genomics Data for the Study of Alzheimer's Disease Using Joint-Connectivity-Based Sparse Nonnegative Matrix Factorization. J Mol Neurosci 72, 255–272 (2022). https://doi.org/10.1007/s12031-021-01888-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01888-6

Keywords

Navigation