Skip to main content

Elevation of Pro-inflammatory and Anti-inflammatory Cytokines in Rat Serum after Acute Methamphetamine Treatment and Traumatic Brain Injury

A Correction to this article was published on 07 November 2021

This article has been updated

Abstract

The use of methamphetamine (METH) is a growing worldwide epidemic that bears grave societal implications. METH is known to exert its neurotoxic effects on the dopaminergic and serotonergic systems of the brain. In addition to this classical studied mechanism of damage, findings from our laboratory and others have shown that acute METH treatment and mechanical injury, i.e. traumatic brain injury (TBI), share common cell injury mechanism(s). Since neuro-inflammation is a signature event in TBI, we hypothesize that certain cytokine levels might also be altered in rat brain exposed to an acute METH insult. In this study, using a cytokine antibody array chip, we evaluated the serum levels of 19 cytokines in rats 24 h after exposure to a 40 mg/kg acute regimen of METH. Data were compared to rats subjected to experimental TBI using the controlled cortical impact (CCI) injury model and saline controls. Sandwich ELISA method was used to further validate some of the findings obtained from the antibody cytokine array. We confirmed that three major inflammatory-linked cytokines (IL-1β, IL-6, and IL-10) were elevated in the METH and TBI groups compared to the saline group. Such finding suggests the involvement of an inflammatory process in these brain insults, indicating that METH use is, in fact, a stressor to the immune system where systemic involvement of an altered cytokine profile may play a major role in mediating chemical brain injury after METH use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of Data and Material

All data generated or analyzed during this study are included in this published article

Change history

Abbreviations

IL:

Interleukin

METH:

Methamphetamine

DA:

Dopamine

TBI:

Traumatic brain injury

NK:

Natural killers

APC:

Antigen-presenting cells

References

  • Akbari A, Mosayebi G, Samiei AR, Ghazavi A (2019) Methadone therapy modulate the dendritic cells of heroin addicts. Int Immunopharmacol 66:330–335

    CAS  PubMed  Google Scholar 

  • Apuzzo ML, Sheikh KM, Heiden JS, Weiss MH, Kurze T (1979) Definition of cellular immune responses to brain antigens in human head trauma. J Neurosurg 51:317–322

    CAS  PubMed  Google Scholar 

  • Ares-Santos S, Granado N, Moratalla R (2013) The role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med 273:437–453

    CAS  PubMed  Google Scholar 

  • Asanuma M, Miyazaki I, Higashi Y, Tsuji T, Ogawa N (2004) Specific gene expression and possible involvement of inflammation in methamphetamine-induced neurotoxicity. Ann N Y Acad Sci 1025:69–75

    CAS  PubMed  Google Scholar 

  • Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9:259–275

    CAS  PubMed  Google Scholar 

  • Borgmann K, Ghorpade A (2015) HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 6

  • Bowyer JF, Ali S (2006) High doses of methamphetamine that cause disruption of the blood-brain barrier in limbic regions produce extensive neuronal degeneration in mouse hippocampus. Synapse 60:521–532

    CAS  PubMed  Google Scholar 

  • Bowyer JF, Pogge AR, Delongchamp RR, O’Callaghan JP, Patel KM, Vrana KE, Freeman WM (2007) A threshold neurotoxic amphetamine exposure inhibits parietal cortex expression of synaptic plasticity-related genes. Neuroscience 144:66–76

    CAS  PubMed  Google Scholar 

  • Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. Faseb J 17:1775–1788

    CAS  PubMed  Google Scholar 

  • Cadet JL, Ordonez SV, Ordonez JV (1997) Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse 25:176–184

    CAS  PubMed  Google Scholar 

  • Chiaretti A, Antonelli A, Riccardi R, Genovese O, Pezzotti P, Di Rocco C, Tortorolo L, Piedimonte G (2008) Nerve growth factor expression correlates with severity and outcome of traumatic brain injury in children. Eur J Paediatr Neurol 12:195–204

    PubMed  Google Scholar 

  • Connor TJ (2004) Methylenedioxymethamphetamine (MDMA, ’Ecstasy’): a stressor on the immune system. Immunology 111:357–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Courtney KE, Ray LA (2014) Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend 143:11–21

    CAS  PubMed  Google Scholar 

  • Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T (1999) IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol 101:211–221

    CAS  PubMed  Google Scholar 

  • Czigner A, Mihaly A, Farkas O, Buki A, Krisztin-Peva B, Dobo E, Barzo P (2007) Kinetics of the cellular immune response following closed head injury. Acta Neurochir (Wien)

  • Czogalla A, Sikorski AF (2005) Spectrin and calpain: a “target” and a “sniper” in the pathology of neuronal cells. Cell Mol Life Sci 62:1913–1924

    CAS  PubMed  Google Scholar 

  • Dinarello CA (2014) An expanding role for interleukin-1 blockade from gout to cancer. Mol Med 20(Suppl 1):S43-58

    PubMed  PubMed Central  Google Scholar 

  • Du SH, Qiao DF, Chen CX, Chen S, Liu C, Lin Z, Wang H, Xie WB (2017) Toll-Like Receptor 4 Mediates Methamphetamine-Induced Neuroinflammation through Caspase-11 Signaling Pathway in Astrocytes. Front Mol Neurosci 10:409

    PubMed  PubMed Central  Google Scholar 

  • Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8:1254–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin EA, Greco JM, Frases S, Nosanchuk JD, Martinez LR (2013) Methamphetamine alters blood brain barrier protein expression in mice, facilitating central nervous system infection by neurotropic Cryptococcus neoformans. J Infect Dis 208:699–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas O, Polgar B, Szekeres-Bartho J, Doczi T, Povlishock JT, Büki A (2005) Spectrin breakdown products in the cerebrospinal fluid in severe head injury - preliminary observations. Acta Neurochir (wien) 147:855–861

    CAS  Google Scholar 

  • Ginawi OT, Al-Majed AA, Al-Suwailem AK (2005) NAN-190, a possible specific antagonist for methamphetamine. Regul Toxicol Pharmacol 41:122–127

    CAS  PubMed  Google Scholar 

  • Ginawi OT, Al-Majed AA, Al-Suwailem AK, El-Hadiyah TM (2004) Involvement of some 5-HT receptors in methamphetamine-induced locomotor activity in mice. J Physiol Pharmacol 55:357–369

    CAS  PubMed  Google Scholar 

  • Gonçalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP (2008) Methamphetamine-Induced Early Increase of IL-6 and TNF-α mRNA Expression in the Mouse Brain. Ann N Y Acad Sci 1139:103–111

    PubMed  Google Scholar 

  • Gruol DL, Nelson TE (1997) Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 15:307–339

    CAS  PubMed  Google Scholar 

  • Haskins WE, Kobeissy FH, Wolper RA, Ottens AK, Kitlen JW, McClung SH, O’Steen BE, Chow MM, Pineda JA, Denslow ND, Hayes RL, Wang KK (2005) Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry. J Neurotrauma 22:629–644

    PubMed  Google Scholar 

  • Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F, Hosotubo H, Kieko F, Yamashita T, Tanaka H, Shimazu T, Sugimoto H (2004) Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 22:102–107

    CAS  PubMed  Google Scholar 

  • Hedegaard H, Bastian BA, Trinidad JP, Spencer M, Warner M (2018) Drugs Most Frequently Involved in Drug Overdose Deaths: United States, 2011–2016. Natl Vital Stat Rep 67:1–14

    PubMed  Google Scholar 

  • Hirata H, Cadet JL (1997) p53-knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies. J Neurochem 69:780–790

    CAS  PubMed  Google Scholar 

  • Ho EL, Josephson SA, Lee HS, Smith WS (2009) Cerebrovascular complications of methamphetamine abuse. Neurocrit Care 10:295–305

    PubMed  Google Scholar 

  • House RV, Thomas PT, Bhargava HN (1994) Comparison of immune functional parameters following in vitro exposure to natural and synthetic amphetamines. Immunopharmacol Immunotoxicol 16:1–21

    CAS  PubMed  Google Scholar 

  • Ikeda T, Xia XY, Xia YX, Ikenoue T, Han B, Choi BH (2000) Glial cell line-derived neurotrophic factor protects against ischemia/hypoxia-induced brain injury in neonatal rat. Acta Neuropathol 100:161–167

    CAS  PubMed  Google Scholar 

  • Itzhak Y, Ali SF (1996) The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J Neurochem 67:1770–1773

    CAS  PubMed  Google Scholar 

  • Jimenez A, Jorda EG, Verdaguer E, Pubill D, Sureda FX, Canudas AM, Escubedo E, Camarasa J, Camins A, Pallas M (2004) Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells. Toxicol Appl Pharmacol 196:223–234

    CAS  PubMed  Google Scholar 

  • Kamm K, Vanderkolk W, Lawrence C, Jonker M, Davis AT (2006) The effect of traumatic brain injury upon the concentration and expression of interleukin-1beta and interleukin-10 in the rat. J Trauma 60:152–157

    PubMed  Google Scholar 

  • Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, Tortella FC, Hayes RL, Wang KK (2006) Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics 5:1887–1898

    CAS  PubMed  Google Scholar 

  • Kousik SM, Napier TC, Carvey PM (2012) The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol 3:121

    PubMed  PubMed Central  Google Scholar 

  • Krueger J, Ray A, Tamm I, Sehgal PB (1991) Expression and function of interleukin-6 in epithelial cells. J Cell Biochem 45:327–334

    CAS  PubMed  Google Scholar 

  • Kuhn DM, Francescutti-Verbeem DM, Thomas DM (2006) Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann N Y Acad Sci 1074:31–41

    CAS  PubMed  Google Scholar 

  • Ladenheim B, Krasnova IN, Deng X, Oyler JM, Polettini A, Moran TH, Huestis MA, Cadet JL (2000) Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol Pharmacol 58:1247–1256

    CAS  PubMed  Google Scholar 

  • Lai KSP, Liu CS, Rau A, Lanctôt KL, Köhler CA, Pakosh M, Carvalho AF, Herrmann N (2017) Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry 88:876–882

    PubMed  Google Scholar 

  • Lan KC, Lin YF, Yu FC, Lin CS, Chu P (1998) Clinical manifestations and prognostic features of acute methamphetamine intoxication. J Formos Med Assoc 97:528–533

    CAS  PubMed  Google Scholar 

  • Lauw FN, Pajkrt D, Hack CE, Kurimoto M, van Deventer SJ, van der Poll T (2000) Proinflammatory effects of IL-10 during human endotoxemia. J Immunol 165:2783–2789

    CAS  PubMed  Google Scholar 

  • Liu HM, Sturner WQ (1988) Extravasation of plasma proteins in brain trauma. Forensic Sci Int 38:285–295

    CAS  PubMed  Google Scholar 

  • Liu X, Silverstein PS, Singh V, Shah A, Qureshi N, Kumar A (2012) Methamphetamine increases LPS-mediated expression of IL-8, TNF-α and IL-1β in human macrophages through common signaling pathways. PLoS One 7:e33822

  • Loftis JM, Janowsky A (2014) Neuroimmune basis of methamphetamine toxicity. Int Rev Neurobiol 118:165–197

    PubMed  PubMed Central  Google Scholar 

  • Lotan M, Schwartz M (1994) Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. Faseb J 8:1026–1033

    CAS  PubMed  Google Scholar 

  • Lotocki G, Alonso OF, Frydel B, Dietrich WD, Keane RW (2003) Monoubiquitination and cellular distribution of XIAP in neurons after traumatic brain injury. J Cereb Blood Flow Metab 23:1129–1136

    CAS  PubMed  Google Scholar 

  • Lwin T, Yang JL, Ngampramuan S, Viwatpinyo K, Chancharoen P, Veschsanit N, Pinyomahakul J, Govitrapong P, Mukda S (2020) Melatonin ameliorates methamphetamine-induced cognitive impairments by inhibiting neuroinflammation via suppression of the TLR4/MyD88/NFκB signaling pathway in the mouse hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 110109

  • Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Adal A, Qi M, Toh J, Xu G, Prasad PN, Schwartz SA (2008) Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: Implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res 1203:133–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier B, Schwerdtfeger K, Mautes A, Holanda M, Muller M, Steudel WI, Marzi I (2001) Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 15:421–426

    CAS  PubMed  Google Scholar 

  • Marciano PG, Eberwine JH, Ragupathi R, Saatman KE, Meaney DF, McIntosh TK (2002) Expression profiling following traumatic brain injury: a review. Neurochem Res 27:1147–1155

    CAS  PubMed  Google Scholar 

  • Miyazaki M, Noda Y, Mouri A, Kobayashi K, Mishina M, Nabeshima T, Yamada K (2013) Role of convergent activation of glutamatergic and dopaminergic systems in the nucleus accumbens in the development of methamphetamine psychosis and dependence. Int J Neuropsychopharmacol 16:1341–1350

    CAS  PubMed  Google Scholar 

  • Mizoguchi H, Yamada K, Mouri A, Niwa M, Mizuno T, Noda Y, Nitta A, Itohara S, Banno Y, Nabeshima T (2007) Role of matrix metalloproteinase and tissue inhibitor of MMP in methamphetamine-induced behavioral sensitization and reward: implications for dopamine receptor down-regulation and dopamine release. J Neurochem 102:1548–1560

    CAS  PubMed  Google Scholar 

  • Mizoguchi H, Yamada K, Nabeshima T (2008) Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents. J Pharmacol Sci 106:9–14

    CAS  PubMed  Google Scholar 

  • Mizoguchi H, Yamada K, Nabeshima T (2011) Matrix metalloproteinases contribute to neuronal dysfunction in animal models of drug dependence, Alzheimer's disease, and epilepsy. Biochem Res Int 2011:681385

  • Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM (2003) The dual role of IL-10. Trends Immunol 24:36–43

    CAS  PubMed  Google Scholar 

  • Muller M, Schwerdtfeger K, Maier B, Mautes A, Schiedat T, Bianchi O, Marzi I (2001) Cerebral blood flow velocity and inflammatory response after severe traumatic brain injury. Eur J Ultrasound 12:203–208

    CAS  PubMed  Google Scholar 

  • Najera JA, Bustamante EA, Bortell N, Morsey B, Fox HS, Ravasi T, Marcondes MC (2016) Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets. BMC Immunol 17:7

    PubMed  PubMed Central  Google Scholar 

  • NSDUH-Report (2006) Methamphetamine Use, Abuse, and Dependence: 2002, 2003, and 2004. National Survey on Drug Use and Health

  • Park M, Kim HJ, Lim B, Wylegala A, Toborek M (2013) Methamphetamine-induced occludin endocytosis is mediated by the Arp2/3 complex-regulated actin rearrangement. J Biol Chem 288:33324–33334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel D, Desai GM, Frases S, Cordero RJ, DeLeon-Rodriguez CM, Eugenin EA, Nosanchuk JD, Martinez LR (2013) Methamphetamine enhances Cryptococcus neoformans pulmonary infection and dissemination to the brain. mBio 4

  • Perez JA Jr, Arsura EL, Strategos S (1999) Methamphetamine-related stroke: four cases. J Emerg Med 17:469–471

    PubMed  Google Scholar 

  • Pike BR, Flint J, Dutta S, Johnson E, Wang KK, Hayes RL (2001) Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 78:1297–1306

    CAS  PubMed  Google Scholar 

  • Pike BR, Zhao X, Newcomb JK, Posmantur RM, Wang KK, Hayes RL (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. NeuroReport 9:2437–2442

    CAS  PubMed  Google Scholar 

  • Pineda JA, Wang KK, Hayes RL (2004) Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol 14:202–209

    CAS  PubMed  Google Scholar 

  • Pu C, Broening HW, Vorhees CV (1996) Effect of methamphetamine on glutamate-positive neurons in the adult and developing rat somatosensory cortex. Synapse 23:328–334

    CAS  PubMed  Google Scholar 

  • Ramirez SH, Potula R, Fan S, Eidem T, Papugani A, Reichenbach N, Dykstra H, Weksler BB, Romero IA, Couraud PO, Persidsky Y (2009) Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 29:1933–1945

    CAS  PubMed  Google Scholar 

  • Rivera S, Tremblay E, Timsit S, Canals O, Ben-Ari Y, Khrestchatisky M (1997) Tissue inhibitor of metalloproteinases-1 (TIMP-1) is differentially induced in neurons and astrocytes after seizures: evidence for developmental, immediate early gene, and lesion response. J Neurosci 17:4223–4235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robson MJ, Turner RC, Naser ZJ, McCurdy CR, Huber JD, Matsumoto RR (2013) SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation. Exp Neurol 247:134–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothaug M, Becker-Pauly C, Rose-John S (2016) The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta 1863:1218–1227

    CAS  PubMed  Google Scholar 

  • Sajja RK, Rahman S, Cucullo L (2016) Drugs of abuse and blood-brain barrier endothelial dysfunction: A focus on the role of oxidative stress. J Cereb Blood Flow Metab 36:539–554

    CAS  PubMed  Google Scholar 

  • Seiden LS, Commins DL, Vosmer G, Axt K, Marek G (1988) Neurotoxicity in dopamine and 5-hydroxytryptamine terminal fields: a regional analysis in nigrostriatal and mesolimbic projections. Ann N Y Acad Sci 537:161–172

    CAS  PubMed  Google Scholar 

  • Shimamura M, Garcia JM, Prough DS, Dewitt DS, Uchida T, Shah SA, Avila MA, Hellmich HL (2005) Analysis of long-term gene expression in neurons of the hippocampal subfields following traumatic brain injury in rats. Neuroscience 131:87–97

    CAS  PubMed  Google Scholar 

  • Siman R, Noszek JC, Kegerise C (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9:1579–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK (2003) Protein accumulation in traumatic brain injury. Neuromolecular Med 4:59–72

    CAS  PubMed  Google Scholar 

  • Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    CAS  PubMed  Google Scholar 

  • Sokolov BP, Cadet JL (2006) Methamphetamine causes alterations in the MAP kinase-related pathways in the brains of mice that display increased aggressiveness. Neuropsychopharmacology 31:956–966

    CAS  PubMed  Google Scholar 

  • Stahel PF, Kossmann T, Joller H, Trentz O, Morganti-Kossmann MC (1998) Increased interleukin-12 levels in human cerebrospinal fluid following severe head trauma. Neurosci Lett 249:123–126

    CAS  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79:231–239

    CAS  PubMed  Google Scholar 

  • Suwanjang W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B (2012) Calpastatin reduces calpain and caspase activation in methamphetamine-induced toxicity in human neuroblastoma SH-SY5Y cultured cells. Neurosci Lett 526:49–53

    CAS  PubMed  Google Scholar 

  • Taylor CA, Bell JM, Breiding MJ, Xu L (2017) Traumatic brain injury–related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill Summ 66(9):1–16. https://doi.org/10.15585/mmwr.ss6609a1

  • Theodore S, Cass WA, Maragos WF (2006) Involvement of cytokines in human immunodeficiency virus-1 protein Tat and methamphetamine interactions in the striatum. Exp Neurol 199:490–498

    CAS  PubMed  Google Scholar 

  • Tipton DA, Legan ZT, Dabbous M (2010) Methamphetamine cytotoxicity and effect on LPS-stimulated IL-1beta production by human monocytes. Toxicol in Vitro 24:921–927

    CAS  PubMed  Google Scholar 

  • UNODC (2019) World Drug Report. United Nations publication, Sales No. E.19.XI.8

  • Vargas AM, Rivera-Rodriguez DE, Martinez LR (2020) Methamphetamine alters the TLR4 signaling pathway, NF-κB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Mol Immunol 121:159–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace TL, Vorhees CV, Zemlan FP, Gudelsky GA (2003) Methamphetamine enhances the cleavage of the cytoskeletal protein tau in the rat brain. Neuroscience 116:1063–1068

    CAS  PubMed  Google Scholar 

  • Warren MW, Kobeissy FH, Liu MC, Hayes RL, Gold MS, Wang KK (2005) Concurrent calpain and caspase-3 mediated proteolysis of alpha II-spectrin and tau in rat brain after methamphetamine exposure: a similar profile to traumatic brain injury. Life Sci 78:301–309

    CAS  PubMed  Google Scholar 

  • Warren MW, Kobeissy FH, Liu MC, Hayes RL, Gold MS, Wang KK (2006a) Ecstasy toxicity: a comparison to methamphetamine and traumatic brain injury. J Addict Dis 25:115–123

    PubMed  Google Scholar 

  • Warren MW, Zheng W, Kobeissy FH, Cheng Liu M, Hayes RL, Gold MS, Larner SF, Wang KK (2006b) Calpain- and caspase-mediated alphaII-spectrin and tau proteolysis in rat cerebrocortical neuronal cultures after ecstasy or methamphetamine exposure. Int J Neuropsychopharmacol 1–11

  • Wennersten A, Holmin S, Mathiesen T (2003) Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol (berl) 105:281–288

    CAS  Google Scholar 

  • Yamaguchi T, Kuraishi Y, Minami M, Nakai S, Hirai Y, Satoh M (1991) Methamphetamine-induced expression of interleukin-1 beta mRNA in the rat hypothalamus. Neurosci Lett 128:90–92

    CAS  PubMed  Google Scholar 

  • Yang T, Zang S, Wang Y, Zhu Y, Jiang L, Chen X, Zhang X, Cheng J, Gao R, Xiao H, Wang J (2020) Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol Lett 333:150–158

    CAS  PubMed  Google Scholar 

  • Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Zhang D, Walston M, Zhang J, Liu Y, Watson RR (2002) Chronic methamphetamine exposure alters immune function in normal and retrovirus-infected mice. Int Immunopharmacol 2:951–962

    CAS  PubMed  Google Scholar 

  • Zheng LM, Ojcius DM, Garaud F, Roth C, Maxwell E, Li Z, Rong H, Chen J, Wang XY, Catino JJ, King I (1996) Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp Med 184:579–584

    CAS  PubMed  Google Scholar 

  • Zhou Z, Chen H, Zhang K, Yang H, Liu J, Huang Q (2003) Protective effect of nerve growth factor on neurons after traumatic brain injury. J Basic Clin Physiol Pharmacol 14:217–224

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Zaynab Shakkour for helping in editing and correcting the article. We declare that all authors contributed significantly to the study and accepted the manuscript for submission. There are no conflicts of interest by any of the authors. All authors have read and approved the submission of the manuscript; the manuscript has not been published and is not being considered for publication elsewhere, in whole or in part, in any language.

Funding

This study was supported in part by the Donald and Irene Dizney Eminent Scholar Chair, held by Mark Gold, M.D. Distinguished Professor, McKnight Brain Institute and also by the Department of Defense (DOD) grant # DAMD17-03–1-0066.

Author information

Authors and Affiliations

Authors

Contributions

FK, KW, and MSG conceived and designed the study. FK and ZS collected the data. FK, SEH, and ZS contributed to data analysis. FK performed the experiments, WM, ZS, and SEH drafted the manuscript. All authors reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kevin K. W. Wang.

Ethics declarations

Ethics Declarations and Consent to Participate

All the animal experiments in our study were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Florida.

Consent for Publication

All authors read and approved the final manuscript.

Competing Interests

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article, published on 20 September 2021, the authors have found an error. The fourth author family name is incorrect. Wael Mohammad should be "Wael Mohamed".

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kobeissy, F.H., Shakkour, Z., Hayek, S.E. et al. Elevation of Pro-inflammatory and Anti-inflammatory Cytokines in Rat Serum after Acute Methamphetamine Treatment and Traumatic Brain Injury. J Mol Neurosci 72, 158–168 (2022). https://doi.org/10.1007/s12031-021-01886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01886-8

Keywords

  • IL-10
  • IL-6
  • IL-1β
  • Methamphetamine
  • Traumatic brain injury
  • Drug use