Skip to main content

Advertisement

Log in

Role of circRNAs in neurodevelopment and neurodegenerative diseases

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

With the rapid development of sequencing technology, scientists have been able to study and acquire a better understanding of non-coding RNAs (ncRNAs). Circular RNAs (circRNAs), a unique class of ncRNAs with a special loop structure, have been found to possess modulatory properties with respect to various biological processes, such as interacting with nucleic acids or proteins. In addition to their tissue-specific expression and high conservation across species, circRNAs are abundant and dynamically expressed in the nervous system, especially in nerve synapse, indicating their potential regulation in synaptic plasticity or neuronal disorders. In this review, we discuss the characteristics of circRNAs and their common biological functions, as well as their significant role in neurodevelopment, drug addiction and neurodegenerative diseases, aiming to guide further disease diagnoses and efficient therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 2:215–233

    Article  Google Scholar 

  • Bose R, Ain R (2018) Regulation of transcription by circular RNAs. Adv Exp Med Biol 81–94

  • Bu Q, Long H, Shao X, Gu H, Kong J, Luo L, Liu B, Guo W, Wang H, Tian J, Zhao Y, Cen X (2019) Cocaine induces differential circular RNA expression in striatum. Transl Psychiatry 1:199

    Article  Google Scholar 

  • Cai C, Zhi Y, Wang K, Zhang P, Ji Z, Xie C, Sun F (2019) CircHIPK3 overexpression accelerates the proliferation and invasion of prostate cancer cells through regulating miRNA-338–3p. Onco Targets Ther 3363–3372

  • Chen G, Shi Y, Liu M, Sun J (2018) CircHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 2:175

    Article  Google Scholar 

  • Chen X, Mao R, Su W, Yang X, Geng Q, Guo C, Wang Z, Wang J, Kresty LA, Beer DG, Chang AC, Chen G (2020) Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKalpha signaling in STK11 mutant lung cancer. Autophagy 4:659–671

    Article  CAS  Google Scholar 

  • Chen Y, Yang F, Fang E, Xiao W, Mei H, Li H, Li D, Song H, Wang J, Hong M, Wang X, Huang K, Zheng L, Tong Q (2019a) Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ 7:1346–1364

    Article  Google Scholar 

  • Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, Hur S, Chang HY (2019b) N6-methyladenosine modification controls circular RNA immunity. Mol Cell 1:96-109.e9

    Article  Google Scholar 

  • Diallo LH, Tatin F, David F, Godet AC, Zamora A, Prats AC, Garmy-Susini B, Lacazette E (2019) How are circRNAs translated by non-canonical initiation mechanisms? Biochimie 45–52

  • Diling C, Yinrui G, Longkai Q, Xiaocui T, Yadi L, Xin Y, Guoyan H, Ou S, Tianqiao Y, Dongdong W, Yizhen X, Yang BB, Qingping W (2019) Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging (albany NY) 24:12002–12031

    Article  Google Scholar 

  • Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 6:2846–2858

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 351–79

  • Feng Z, Zhang L, Wang S, Hong Q (2020) Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Biochem Biophys Res Commun 2:388–394

    Article  Google Scholar 

  • Gruner H, Cortes-Lopez M, Cooper DA, Bauer M, Miura P (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 38907

  • Hanan M, Simchovitz A, Yayon N, Vaknine S, Cohen-Fultheim R, Karmon M, Madrer N, Rohrlich TM, Maman M, Bennett ER, Greenberg DS, Meshorer E, Levanon EY, Soreq H, Kadener S (2020) A Parkinson's disease CircRNAs resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol Med 9:e11942

  • Holdt LM, Kohlmaier A, Teupser D (2018) Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 6:1071–1098

    Article  Google Scholar 

  • Hsu MT, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 5720:339–340

    Article  Google Scholar 

  • Huang JL, Qin MC, Zhou Y, Xu ZH, Yang SM, Zhang F, Zhong J, Liang MK, Chen B, Zhang WY, Wu DP, Zhong ZG (2018) Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model. Aging (albany NY) 2:253–265

    Article  Google Scholar 

  • Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G, Chao J, Hu G, Yao H (2017) Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy 10:1722–1741

    Article  Google Scholar 

  • Irie T, Shum R, Deni I, Hunkele A, Le Rouzic V, Xu J, Wilson R, Fischer GW, Pasternak GW, Pan YX (2019) Identification of abundant and evolutionarily conserved opioid receptor circular RNAs in the nervous system modulated by morphine. Mol Pharmacol 2:247–258

    Article  Google Scholar 

  • Jafari GF (2018) Circular RNA in saliva. Adv Exp Med Biol 131–139

  • Kolling M, Haddad G, Wegmann U, Kistler A, Bosakova A, Seeger H, Hubel K, Haller H, Mueller T, Wuthrich RP, Lorenzen JM (2019) Circular RNAs in urine of kidney transplant patients with acute t cell-mediated allograft rejection. Clin Chem 10:1287–1294

    Article  Google Scholar 

  • Kristensen LS, Okholm T, Veno MT, Kjems J (2018) Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol 2:280–291

    Article  Google Scholar 

  • Kumar L, Shamsuzzama JP, Haque R, Shukla S, Nazir A (2018) Functional characterization of novel circular RNA molecule, circzip-2 and its synthesizing gene zip-2 in C. elegans model of Parkinson’s disease. Mol Neurobiol 8:6914–6926

    Article  Google Scholar 

  • Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 12:1829–1842

    Article  Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 1:22-37.e9

    Article  Google Scholar 

  • Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del PH, O'Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Gorgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Kramer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lotvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BW, Wauben M, Andaloussi SE, Thery C, Rohde E, Giebel B (2015) Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 30087

  • Li J, Shi Q, Wang Q, Tan X, Pang K, Liu X, Zhu S, Xi K, Zhang J, Gao Q, Hu Y, Sun J (2019a) Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neurosci Lett 146–153

  • Li J, Sun Q, Zhu S, Xi K, Shi Q, Pang K, Liu X, Li M, Zhang Y, Sun J (2020) Knockdown of circHomer1 ameliorates METH-induced neuronal injury through inhibiting Bbc3 expression. Neurosci Lett 135050

  • Li XN, Wang ZJ, Ye CX, Zhao BC, Huang XX, Yang L (2019b) Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer. Biomed Pharmacother 108611

  • Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, Liu D, Wang M, Wang L, Zeng F, Jiang G (2017) CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep 9:1646–1659

    Article  Google Scholar 

  • Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 3:256–264

    Article  Google Scholar 

  • Liang G, Yang Y, Niu G, Tang Z, Li K (2017) Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res 5:523–535

    Article  Google Scholar 

  • Liu L, Wang J, Khanabdali R, Kalionis B, Tai X, Xia S (2017) Circular RNAs: isolation, characterization and their potential role in diseases. RNA Biol 12:1715–1721

    Article  Google Scholar 

  • Lu C, Sun X, Li N, Wang W, Kuang D, Tong P, Han Y, Dai J (2018) CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging. Aging (albany NY) 4:833–852

    Article  Google Scholar 

  • Lu Y, Tan L, Wang X (2019) Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci Bull 5:877–888

    Article  Google Scholar 

  • Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer's disease (AD). Front Genet 307

  • Ma N, Pan J, Ye X, Yu B, Zhang W, Wan J (2019) Whole-transcriptome analysis of APP/PS1 mouse brain and identification of circRNA-miRNA-mRNA networks to investigate AD pathogenesis. Mol Ther Nucleic Acids 1049–1062

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 7441:333–338

    Article  Google Scholar 

  • Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Wu M (2019) Epigenetics in neurodevelopment: emerging role of circular RNA. Front Cell Neurosci 327

  • Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of circRNAs. Mol Cell 1:9-21.e7

    Article  Google Scholar 

  • Ravanidis S, Bougea A, Karampatsi D, Papagiannakis N, Maniati M, Stefanis L, Doxakis E (2021) Differentially expressed circular RNAs in peripheral blood mononuclear cells of patients with Parkinson’s disease. Mov Disord

  • Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 42:73271–73281

    Article  Google Scholar 

  • Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 5:870–885

    Article  Google Scholar 

  • Salama RM, Abdel-Latif GA, Abbas SS, El MH, Schaalan MF (2020) Neuroprotective effect of crocin against rotenone-induced Parkinson's disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 107900

  • Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2:e30733

  • Sang Q, Liu X, Wang L, Qi L, Sun W, Wang W, Sun Y, Zhang H (2018) CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson’s disease by targeting miR-7. Aging (albany NY) 6:1281–1293

    Article  Google Scholar 

  • Sekar S, Cuyugan L, Adkins J, Geiger P, Liang WS (2018) Circular RNA expression and regulatory network prediction in posterior cingulate astrocytes in elderly subjects. BMC Genomics 1:340

    Article  Google Scholar 

  • Shi Z, Chen T, Yao Q, Zheng L, Zhang Z, Wang J, Hu Z, Cui H, Han Y, Han X, Zhang K, Hong W (2017) The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-kappaB-dependent manner. FEBS J 7:1096–1109

    Article  Google Scholar 

  • Vea A, Llorente-Cortes V, de Gonzalo-Calvo D (2018) Circular RNAs in blood. Adv Exp Med Biol 119–130

  • Veno MT, Hansen TB, Veno ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 245

  • Wang Z, Xu P, Chen B, Zhang Z, Zhang C, Zhan Q, Huang S, Xia ZA, Peng W (2018) Identifying circRNA-associated-ceRNA networks in the hippocampus of abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis. Aging (albany NY) 4:775–788

    Article  Google Scholar 

  • Weng Y, Wu J, Li L, Shao J, Li Z, Deng M, Zou W (2019) Circular RNA expression profile in the spinal cord of morphine tolerated rats and screen of putative key circRNAs. Mol Brain 1:79

    Article  Google Scholar 

  • Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y, Li H, Chen Y, Wang X, Huang K, Zheng L, Tong Q (2019) Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer 1:158

    Article  Google Scholar 

  • Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, Yao H (2018) Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 3:404–418

    Article  Google Scholar 

  • Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 5:626–641

    Article  Google Scholar 

  • You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 4:603–610

    Article  Google Scholar 

  • Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, Sun H, Pan Y, He B, Wang S (2018) CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis 4:417

    Article  Google Scholar 

  • Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C, Yang Q, Yee A, Chen Y, Yang F, Sun H, Huang R, Yee AJ, Li RK, Wu Z, Backx PH, Yang BB (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 16:3842–3855

    Article  Google Scholar 

  • Zhang H, Wang Q, Wang Q, Liu A, Qin F, Sun Q, Li Q, Gu Y, Tang Z, Lu S, Lu Z (2020) Circular RNA expression profiling in the nucleus accumbens: effects of electroacupuncture treatment on morphine-induced conditioned place preference. Addict Biol 4:e12794

  • Zhang Y, Wang Q, Zhu D, Rong J, Shi W, Cao X (2019) Up-regulation of circ-SMAD7 inhibits tumor proliferation and migration in esophageal squamous cell carcinoma. Biomed Pharmacother 596–601

  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 6:792–806

    Article  Google Scholar 

  • Zhao Y, Alexandrov PN, Jaber V, Lukiw WJ (2016) Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; CiRS-7). Genes (Basel) 12

  • Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 11215

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jinhao Sun designed this article and Junwei Li wrote the original manuscript. Chenyou Sun and Huairui Cui worked for the article embellishment. Peng Zhou made revisions to the manuscript.

Corresponding author

Correspondence to Peng Zhou.

Ethics declarations

Conflict of Interest

All authors declare that there is no conflict of interest. The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Sun, C., Cui, H. et al. Role of circRNAs in neurodevelopment and neurodegenerative diseases. J Mol Neurosci 71, 1743–1751 (2021). https://doi.org/10.1007/s12031-021-01882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01882-y

Keywords

Navigation