Network-Based Analysis of Cognitive Impairment and Memory Deficits from Transcriptome Data

Abstract

Aging is an inevitable process that negatively affects all living organisms and their vital functions. The brain is one of the most important organs in living beings and is primarily impacted by aging. The molecular mechanisms of learning, memory and cognition are altered over time, and the impairment in these mechanisms can lead to neurodegenerative diseases. Transcriptomics can be used to study these impairments to acquire more detailed information on the affected molecular mechanisms. Here we analyzed learning- and memory-related transcriptome data by mapping it on the organism-specific protein–protein interactome network. Subnetwork discovery algorithms were applied to discover highly dysregulated subnetworks, which were complemented with co-expression-based interactions. The functional analysis shows that the identified subnetworks are enriched with genes having roles in synaptic plasticity, gliogenesis, neurogenesis and cognition, which are reported to be related to memory and learning. With a detailed analysis, we show that the results from different subnetwork discovery algorithms or from different transcriptomic datasets can be successfully reconciled, leading to a memory-learning network that sheds light on the molecular mechanisms behind aging and memory-related impairments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The data used in this study were downloaded from the GEO database.

References

  1. Abel T, Nguyen PV (2008) Chapter 6 Regulation of hippocampus-dependent memory by cyclic AMP-dependent protein kinase. Prog Brain Res. https://doi.org/10.1016/S0079-6123(07)00006-4

  2. Adams KW, Kletsov S, Lamm RJ, Elman JS, Mullenbrock S, Cooper GM (2017) Role for egr1 in the transcriptional program associated with neuronal differentiation of pc12 cells. PLoS ONE 12(1):1–19. https://doi.org/10.1371/journal.pone.0170076

    CAS  Article  Google Scholar 

  3. Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Charowhas C, Clark K, Dicuccio M, Dondoshansky I, Federhen S, Feolo M, Funk K, Geer LY, Gorelenkov V, Zbicz K (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44(D1):D7–D19. https://doi.org/10.1093/nar/gkv1290

    CAS  Article  Google Scholar 

  4. Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89(1):121–145. https://doi.org/10.1152/physrev.00017.2008

    CAS  Article  PubMed  Google Scholar 

  5. Alberini CM, Cruz E, Descalzi G, Bessières B, Gao V (2018) Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia 66(6):1244–1262. https://doi.org/10.1002/glia.23250

    Article  PubMed  Google Scholar 

  6. Alberini CM, Kandel ER (2015) The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a021741

    Article  PubMed Central  Google Scholar 

  7. Alcaraz N, Kücük H, Weile J, Wipat A, Baumbach J (2011) Keypathwayminer: Detecting case-specific biological pathways using expression data. Internet Math 7(4):299–313. https://doi.org/10.1080/15427951.2011.604548

    Article  Google Scholar 

  8. Alcaraz N, Pauling J, Batra R, Barbosa E, Junge A, Christensen AGL, Azevedo V, Ditzel HJ, Baumbach J (2014) KeyPathwayMiner 4.0: Condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape. BMC Syst Biol 8(1):4–9. https://doi.org/10.1186/s12918-014-0099-x

  9. Antoniadis EA, Ko CH, Ralph MR, McDonald RJ (2000) Circadian rhythms, aging and memory. Behav Brain Res. https://doi.org/10.1016/S0166-4328(00)00145-5

    Article  PubMed  Google Scholar 

  10. Bateman A (2019) UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    CAS  Article  Google Scholar 

  11. Beisser D, Klau GW, Dandekar T, Müller T, Dittrich MT (2010) BioNet: An R-Package for the functional analysis of biological networks. Bioinformatics 26(8):1129–1130. https://doi.org/10.1093/bioinformatics/btq089

    CAS  Article  PubMed  Google Scholar 

  12. Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW (2003) Gene microarrays in hippocampal aging: Statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 23(9):3807–3819. https://doi.org/10.1523/jneurosci.23-09-03807.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cathomas F, Azzinnari D, Bergamini G, Sigrist H, Buerge M, Hoop V, Wicki B, Goetze L, Soares S, Kukelova D, Seifritz E, Goebbels S, Nave KA, Ghandour MS, Seoighe C, Hildebrandt T, Leparc G, Klein H, Stupka E, Pryce CR (2019) Oligodendrocyte gene expression is reduced by and influences effects of chronic social stress in mice. Genes Brain Behav 18(1):1–14. https://doi.org/10.1111/gbb.12475

    CAS  Article  Google Scholar 

  14. Chen J, Zhang N, Wen J, Zhang Z (2017) Silencing TAK1 alters gene expression signatures in bladder cancer cells. Oncol Lett 13(5):2975–2981. https://doi.org/10.3892/ol.2017.5819

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Chen ZJ, Vulevic B, Ile KE, Soulika A, Davis W, Reiner PB, Connop BP, Nathwan P, Trojanowski JQ, Tew KD (2004) Association of ABCA2 expression with determinants of Alzheimer’s disease. FASEB J. https://doi.org/10.1096/fj.03-1490fje

    Article  PubMed  Google Scholar 

  16. Cheng L, Li L, Wang L, Li X, Xing H, Zhou J (2018) A random forest classifier predicts recurrence risk in patients with ovarian cancer. Mol Med Rep 18(3):3289–3297. https://doi.org/10.3892/mmr.2018.9300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Citron BA, Saykally JN, Cao C, Dennis JS, Runfeldt M, Arendash GW (2015) Transcription factor Sp1 inhibition, memory, and cytokines in a mouse model of alzheimer’s disease. Am J Neurodegener Dis 4(2):40–48

    PubMed  PubMed Central  Google Scholar 

  18. Clough E, Barrett T (2016) The Gene Expression Omnibus database. Methods Mol Biol 1418(301):93–110. https://doi.org/10.1007/978-1-4939-3578-9_5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crowder RG (2014) Principles of learning and memory: Classic edition. Psychology Press.

  20. Djordjevic J, Djordjevic A, Adzic M, Radojcic MB (2012) Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers. Neuropsychobiology 66(2):112–119. https://doi.org/10.1159/000338605

    Article  PubMed  Google Scholar 

  21. Dutta R, Chomyk AM, Chang A, Ribaudo MV, Deckard SA, Doud MK, Edberg DD, Bai B, Li M, Baranzini SE, Fox RJ, Staugaitis SM, Macklin WB, Trapp BD (2013) Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol. https://doi.org/10.1002/ana.23860

    Article  PubMed  PubMed Central  Google Scholar 

  22. Falcão AM, Meijer M, Scaglione A, Rinwa P, Agirre E, Liang J, Larsen SC, Heskol A, Frawley R, Klingener M, Varas-Godoy M, Raposo AASF, Ernfors P, Castro DS, Nielsen ML, Casaccia P, Castelo-Branco G (2019) PAD2-Mediated Citrullination Contributes to Efficient Oligodendrocyte Differentiation and Myelination. Cell Rep. https://doi.org/10.1016/j.celrep.2019.03.108

    Article  PubMed  PubMed Central  Google Scholar 

  23. Finazzi D, Arosio P (2014) Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch Toxicol 88(10):1787–1802. https://doi.org/10.1007/s00204-014-1329-0

    CAS  Article  PubMed  Google Scholar 

  24. Giese KP, Mizuno K (2013) The roles of protein kinases in learning and memory. Learn Mem 20(10):540–552. https://doi.org/10.1101/lm.028449.112

    CAS  Article  PubMed  Google Scholar 

  25. Göl MF, Erdoğan FF, Bayramov KK, Mehmetbeyoğlu E, Özkul Y (2019) Assessment of genes involved in behavior, learning, memory, and synaptic plasticity following status epilepticus in rats. Epilepsy Behav 98:101–109. https://doi.org/10.1016/j.yebeh.2019.06.023

    Article  PubMed  Google Scholar 

  26. Harman MF, Martín MG (2020) Epigenetic mechanisms related to cognitive decline during aging. J Neurosci Res 98(2):234–246. https://doi.org/10.1002/jnr.24436

    CAS  Article  PubMed  Google Scholar 

  27. Hetmańczyk-Sawicka K, Iwanicka-Nowicka R, Fogtman A, Cieśla J, Włodarski P, Żyżyńska-Granica B, Filocamo M, Dardis A, Peruzzo P, Bednarska-Makaruk M, Koblowska M, Ługowska A (2020) Changes in global gene expression indicate disordered autophagy, apoptosis and inflammatory processes and downregulation of cytoskeletal signalling and neuronal development in patients with Niemann-Pick C disease. Neurogenetics 21(2):105–119. https://doi.org/10.1007/s10048-019-00600-6

    CAS  Article  PubMed  Google Scholar 

  28. Hillgartner MA, Coker SB, Koenig AE, Moore ME, Barnby E, MacGregor GG (2016) Tyrosinemia type I and not treatment with NTBC causes slower learning and altered behavior in mice. J Inherit Metab Dis 39(5):673–682. https://doi.org/10.1007/s10545-016-9949-6

    CAS  Article  PubMed  Google Scholar 

  29. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MPM, van Eijk K, van den Berg LH, Ophoff RA (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13(10):R97. https://doi.org/10.1186/gb-2012-13-10-r97

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Huang X, Lin X, Zeng J, Wang L, Yin P, Zhou L, Hu C, Yao W (2017) A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-14682-5

    CAS  Article  Google Scholar 

  31. Ishimoto T, Ninomiya K, Inoue R, Koike M, Uchiyama Y, Mori H (2017) Mice lacking BCAS1, a novel myelin-associated protein, display hypomyelination, schizophrenia-like abnormal behaviors, and upregulation of inflammatory genes in the brain. Glia 65(5):727–739. https://doi.org/10.1002/glia.23129

    Article  PubMed  Google Scholar 

  32. Kalamohan K, Gunasekaran P, Ibrahim S (2019) Gene coexpression network analysis of multiple cancers discovers the varying stem cell features between gastric and breast cancer. Meta Gene. https://doi.org/10.1016/j.mgene.2019.100576

    Article  Google Scholar 

  33. Kam TI, Song S, Gwon Y, Park H, Yan JJ, Im I, Choi JW, Choi TY, Kim J, Song DK, Takai T, Kim YC, Kim KS, Choi SY, Choi S, Klein WL, Yuan J, Jung YK (2013) FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease. J Clin Investig 123(7):2791–2802. https://doi.org/10.1172/JCI66827

    CAS  Article  PubMed  Google Scholar 

  34. Kaneko KJ, Kohn MJ, Liu C, DePamphilis ML (2007) Transcription factor TEAD2 is involved in neural tube closure. Genesis. https://doi.org/10.1002/dvg.20330

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kessler C, Junker H, Bălşeanu TA, Oprea B, Pirici D, Mogoantă L, Popa-Wagner A (2008) Annexin A3 expression after stroke in the aged rat brain. Rom J Morphol Embryol 49(1):27–35

  36. Knafo S, Venero C, Sánchez-Puelles C, Pereda-Peréz I, Franco A, Sandi C, Suárez LM, Solís JM, Alonso-Nanclares L, Martín ED, Merino-Serrais P, Borcel E, Li S, Chen Y, Gonzalez-Soriano J, Berezin V, Bock E, DeFelipe J, Esteban JA (2012) Facilitation of ampa receptor synaptic delivery as a molecular mechanism for cognitive enhancement. PLoS Biol 10(2). https://doi.org/10.1371/journal.pbio.1001262

  37. Konishi H, Namikawa K, Kiyama H (2006) Annexin III implicated in the microglial response to motor nerve injury. Glia 53(7):723–732. https://doi.org/10.1002/glia.20327

    Article  PubMed  Google Scholar 

  38. Koseska A, Bastiaens PI (2017) Cell signaling as a cognitive process. EMBO J 36(5):568–582. https://doi.org/10.15252/embj.201695383

  39. Langfelder P, Horvath S (2008) WGCNA: An R package for weighted correlation network analysis. BMC Bioinf 9. https://doi.org/10.1186/1471-2105-9-559

  40. Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development. Neuron. https://doi.org/10.1016/j.neuron.2007.06.019

    Article  PubMed  PubMed Central  Google Scholar 

  41. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 Update. Nucleic Acids Res 40(D1):857–861. https://doi.org/10.1093/nar/gkr930

    CAS  Article  Google Scholar 

  42. Liu ZD, Wang Q, Pan DQ, Meng FQ, Li JT, Wang YH (2020) MicroRNA-130b inhibits cerebral ischemia/reperfusion induced cell apoptosis via regulation of IRF1. Eur Rev Med Pharmacol Sci 24(23):12334–12341. https://doi.org/10.26355/eurrev_202012_24027

  43. Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. https://doi.org/10.1186/1741-7007-9-34

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mariottini C, Munari L, Gunzel E, Seco JM, Tzavaras N, Hansen J, Stern SA, Gao V, Aleyasin H, Sharma A, Azeloglu EU, Hodes GE, Russo SJ, Huff V, Birtwistle MR, Blitzer RD, Alberini CM, Iyengar R (2019) Wilm’s tumor 1 promotes memory flexibility. Nat Commun 10(1). https://doi.org/10.1038/s41467-019-11781-x

  45. Martin AO, Alonso G, Guérineau NC (2005) Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis. J Cell Biol 169(3):503–514. https://doi.org/10.1083/jcb.200411054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Miao S, Liu Y, Zhang L, Shan M, Miao Z (2018) Effects of MAPK/ERK pathway on learning and memory in sleep deprivation rats. Int J Clin Exp Med 11(9):9160–9166

    CAS  Google Scholar 

  47. Michel M, Green CL, Eskin A, Lyons LC (2011) PKG-mediated MAPK signaling is necessary for long-term operant memory in Aplysia. Learn Mem 18(2):108–117. https://doi.org/10.1101/lm.2063611

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Miller JA, Oldham MC, Geschwind DH (2008) A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J Neurosci 28(6):1410–1420. https://doi.org/10.1523/JNEUROSCI.4098-07.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Mogi M, Harada M, Kondo T, Riederer P, Nagatsu T (1995) Brain beta 2-microglobulin levels are elevated in the striatum in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 9(1):87–92. https://doi.org/10.1007/BF02252965

  50. Musse AA, Zhen L, Ackerley CA, Bienzle D, Lei H, Poma R, Harauz G, Moscarello MA, Mastronardi FG (2008) Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. DMM Disease Models and Mechanisms 1(4–5):229–240. https://doi.org/10.1242/dmm.000729

    CAS  Article  PubMed  Google Scholar 

  51. Niemeyer C, Matosin N, Kaul D, Philipsen A, Gassen NC (2020) The Role of Cathepsins in Memory Functions and the Pathophysiology of Psychiatric Disorders. Front Psych 11(July):1–8. https://doi.org/10.3389/fpsyt.2020.00718

    Article  Google Scholar 

  52. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, Del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Hermjakob H (2014) The MIntAct project - IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(D1):358–363. https://doi.org/10.1093/nar/gkt1115

    CAS  Article  Google Scholar 

  53. Perlman RL (2016) Mouse Models of Human Disease: An Evolutionary Perspective. Evolution, Medicine, and Public Health eow014. https://doi.org/10.1093/emph/eow014

  54. Qiu J, Dunbar DR, Noble J, Cairns C, Carter R, Kelly V, Chapman KE, Seckl JR, Yau JLW (2016) Decreased Npas4 and Arc mRNA Levels in the Hippocampus of Aged Memory-Impaired Wild-Type But Not Memory Preserved 11β-HSD1 Deficient Mice. J Neuroendocrinol 28(1):1–10. https://doi.org/10.1111/jne.12339

    CAS  Article  Google Scholar 

  55. Ramani AK, Li Z, Hart GT, Carlson MW, Boutz DR, Marcotte EM (2008) A map of human protein interactions derived from co-expression of human mRNAs and their orthologs. Mol Syst Biol 4(180). https://doi.org/10.1038/msb.2008.19

  56. Rao VLR, Dhodda VK, Song G, Bowen KK, Dempsey RJ (2003) Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 71(2):208–219. https://doi.org/10.1002/jnr.10486

    CAS  Article  Google Scholar 

  57. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: A consolidated protein interaction database with provenance. BMC Bioinf 9:1–19. https://doi.org/10.1186/1471-2105-9-405

    CAS  Article  Google Scholar 

  58. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J (2016) g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 44(W1):W83–W89. https://doi.org/10.1093/nar/gkw199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Ribeiro MJ, Schofield MG, Kemenes I, O’Shea M, Kemenes G, Benjamin PR (2005) Activation of MAPK is necessary for long-term memory consolidation following food-reward conditioning. Learn Mem 12(5):538–545. https://doi.org/10.1101/lm.8305

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Rowe WB, Blalock EM, Chen KC, Kadish I, Wang D, Barrett JE, Thibault O, Porter NM, Rose GM, Landfield PW (2007) Hippocampal expression analyses reveal selective association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive impairment in aged rats. J Neurosci 27(12):3098–3110. https://doi.org/10.1523/JNEUROSCI.4163-06.2007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Rusznák Z, Henskens W, Schofield E, Kim WS, Fu YH (2016) Adult neurogenesis and gliogenesis: Possible mechanisms for neurorestoration. Exp Neurobiol 25(3):103–112. https://doi.org/10.5607/en.2016.25.3.103

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schiera G, Di Liegro CM, Di Liegro I (2020) Cell-to-cell communication in learning and memory: From neuro-and glio-transmission to information exchange mediated by extracellular vesicles. Int J Mol Sci 21(1). https://doi.org/10.3390/ijms21010266

  64. Sekar A, Bialas AR, De Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Daly MJ, Carroll MC, Stevens B, Mccarroll SA (2016) Schizophrenia risk from complex variation of complement component 4 Schizophrenia Working Group of the Psychiatric Genomics Consortium HHS Public Access. Nature February 11(5307589):177–183. https://doi.org/10.1038/nature16549.Schizophrenia

  65. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. https://doi.org/10.1101/gr.1239303

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci. https://doi.org/10.1038/nn.4160

    Article  PubMed  PubMed Central  Google Scholar 

  67. Smith JR, Hayman GT, Wang SJ, Laulederkind SJF, Hoffman MJ, Kaldunski ML, Tutaj M, Thota J, Nalabolu HS, Ellanki SLR, Tutaj MA, De Pons JL, Kwitek AE, Dwinell MR, Shimoyama ME (2020) The Year of the Rat: The Rat Genome Database at 20: A multi-species knowledgebase and analysis platform. Nucleic Acids Res 48(D1):D731–D742. https://doi.org/10.1093/nar/gkz1041

    CAS  Article  PubMed  Google Scholar 

  68. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: Mutual information, correlation, and model based indices. BMC Bioinf 13(1). https://doi.org/10.1186/1471-2105-13-328

  69. Spinelli M, Fusco S, Grassi C (2019) Brain insulin resistance and hippocampal plasticity: Mechanisms and biomarkers of cognitive decline. Front Neurosci 10(JUL):1–13. https://doi.org/10.3389/fnins.2019.00788

  70. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):535–539. https://doi.org/10.1093/nar/gkj109

  71. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Iny Stein T, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D (2016) The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016(June):1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5

  72. Tanaka Y, Yamada K, Zhou C-J, Ban N, Shioda S, Inagaki N (2003) Temporal and spatial profiles of ABCA2-expressing oligodendrocytes in the developing rat brain. J Comp Neurol 455(3):353–367. https://doi.org/10.1002/cne.10493

    CAS  Article  PubMed  Google Scholar 

  73. Ting JH, Marks DR, Schleidt SS, Wu JN, Zyskind JW, Lindl KA, Blendy JA, Pierce RC, Jordan-Sciutto KL (2014) Targeted gene mutation of E2F1 evokes age-dependent synaptic disruption and behavioral deficits. J Neurochem 129(5):850–863. https://doi.org/10.1111/jnc.12655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Verbitsky M, Yonan AL, Malleret G, Kandel ER, Gilliam TC, Pavlidis P (2004) Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learn Mem 11(3):253–260. https://doi.org/10.1101/lm.68204

    Article  PubMed  PubMed Central  Google Scholar 

  75. Veyrac A, Besnard A, Caboche J, Davis S, Laroche S (2014) The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog Mol Biol Transl Sci 122:89–129. https://doi.org/10.1016/B978-0-12-420170-5.00004-0

    CAS  Article  PubMed  Google Scholar 

  76. Viana J, Hannon E, Dempster E, Pidsley R, Macdonald R, Knox O, Spiers H, Troakes C, Al-Saraj S, Turecki G, Schalkwyk LC, Mill J (2017) Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions. Hum Mol Genet. https://doi.org/10.1093/hmg/ddw373

    Article  PubMed  Google Scholar 

  77. Volk N, Paul ED, Haramati S, Eitan C, Fields BKK, Zwang R, Gil S, Lowry CA, Chen A (2014) MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1. J Neurosci 34(45):15070–15082. https://doi.org/10.1523/JNEUROSCI.0855-14.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103. https://doi.org/10.1523/JNEUROSCI.1357-09.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Warsow G, Struckmann S, Kerkhoff C, Reimer T, Engel N, Fuellen G (2013) Differential network analysis applied to preoperative breast cancer chemotherapy response. PLoS One 8(12). https://doi.org/10.1371/journal.pone.0081784

  80. Wu G, Wang X, Feng X, Zhang A, Li J, Gu K, Huang J, Pang S, Dong H, Gao H, Yan B (2011) Altered expression of autophagic genes in the peripheral leukocytes of patients with sporadic Parkinson’s disease. Brain Res 1394:105–111. https://doi.org/10.1016/j.brainres.2011.04.013

    CAS  Article  PubMed  Google Scholar 

  81. Yanai H, Taniguchi T (2008) IRF family transcription factors and host defense signaling. Tanpakushitsu kakusan koso. Protein Nucleic Acid Enzyme 53(10):1231–1238

  82. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, Billis K, Boddu S, Marugán JC, Cummins C, Davidson C, Dodiya K, Fatima R, Gall A, Flicek P (2020) Ensembl 2020. Nucleic Acids Res 48(D1):D682–D688. https://doi.org/10.1093/nar/gkz966

    CAS  Article  PubMed  Google Scholar 

  83. Yin JG, Liu XY, Wang B, Wang DY, Wei M, Fang H, Xiang M (2016) Gene expression profiling analysis of ovarian cancer. Oncol Lett 12(1):405–412. https://doi.org/10.3892/ol.2016.4663

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Zakharyan R, Atshemyan S, Gevorgyan A, Boyajyan A (2014) Nerve growth factor and its receptor in schizophrenia. BBA Clinical 1:24–29. https://doi.org/10.1016/j.bbacli.2014.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, Von Weizsäcker F, Thürmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R (2010) Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52(6):2127–2136. https://doi.org/10.1002/hep.23930

    CAS  Article  PubMed  Google Scholar 

  86. Zhang B, Chen X, Lv Y, Wu X, Gui L, Zhang Y, Qiu J, Song G, Yao W, Wan L, Zhang C (2019) Cdh1 overexpression improves emotion and cognitive-related behaviors via regulating hippocampal neuroplasticity in global cerebral ischemia rats. Neurochem Int 124:225–237. https://doi.org/10.1016/j.neuint.2019.01.015

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Turkish Academy of Sciences Outstanding Young Scientists Award Program (TUBA-GEBIP).

Author information

Affiliations

Authors

Contributions

TC conceived and supervised the study. EE performed all the simulations. TC and EE wrote the manuscript.

Corresponding author

Correspondence to Tunahan Çakır.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emanetci, E., Çakır, T. Network-Based Analysis of Cognitive Impairment and Memory Deficits from Transcriptome Data. J Mol Neurosci (2021). https://doi.org/10.1007/s12031-021-01807-9

Download citation

Keywords

  • Memory-learning mechanisms
  • Transcriptome data
  • Subnetwork discovery
  • Protein–protein interactome network
  • Co-expression
  • Systems biology