Skip to main content

Advertisement

Log in

Correlation Between SNPs at the 3'UTR of the FGF2 Gene and Their Interaction with Environmental Factors in Han Chinese Diabetic Peripheral Neuropathy Patients

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

FGF2 is a neurotrophic factor that can act as a key regulatory molecule of neuroprotection, neurogenesis, and angiogenesis in various injuries. To explore the genetic background of the FGF2 gene on DPN development, this study analyzed the correlation between SNPs in the 3'UTR of the FGF2 gene and their interaction with environmental factors in DPN patients of Han Chinese nationality. Sanger sequencing was used to analyze the FGF2 genotypes at the rs1048201, rs3804158, rs41348645, rs6854081, rs3747676, rs7683093, rs1476215, and rs1476217 loci in 150 DPN patients, 150 NDPN patients, and 150 healthy control patients. Plasma FGF2 levels were measured in all subjects by using ELISAs. Subjects carrying the T allele at the rs1048201 locus in the FGF2 gene had a significantly lower risk of developing DPN compared with subjects carrying the C allele (OR = 0.43, 95% CI = 0.33–0.56, p < 0.01). Subjects with the G genotype at the rs6854081 locus had an exceptionally higher risk of developing DPN than subjects with the T allele (OR = 1.66, 95% CI = 1.39–1.89, p < 0.01). Individuals harboring the G allele at the rs7683093 locus had a markedly higher risk of DPN than patients with the C allele (OR = 1.63, 95% CI = 1.36–1.87, p < 0.01). Finally, individuals having the A genotype at the rs1476215 locus had a significantly higher risk of DPN than individuals carrying the T allele (OR = 1.82, 95% CI = 1.53–2.02, p < 0.01). There was an interaction between age and alcohol consumption and the SNP rs7683093. SNPs at rs1048201, rs6854081, rs7683093, and rs1476215 in the FGF2 3’UTR were strongly associated with plasma levels of FGF2 (p < 0.05). SNPs at the rs1048201, rs6854081, rs7683093, and rs1476215 loci in the FGF2 gene were significantly associated with the risk of DPN. A possible mechanism is that these SNPs affect the expression level of FGF2 by interrupting the binding of microRNAs to target sites in the 3'UTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Diabetes A (2012) Standards of medical care in diabetes--2012. Diabetes Care 35(Suppl 1):S11–S63

    Google Scholar 

  • Andrades JA, Wu LT, Hall FL, Nimni ME, Becerra J (2001) Engineering, expression, and renaturation of a collagen-targeted human bFGF fusion protein. Growth Factors 18(4):261–275

    Article  CAS  PubMed  Google Scholar 

  • Bin X, Lin C, Huang X, Zhou Q, Wang L, Xian CJ (2017) FGF-2 gene polymorphism in osteoporosis among Guangxi's Zhuang Chinese. Int J Mol Sci 18(7)

  • Cameron NE, Eaton SE, Cotter MA, Tesfaye S (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44(11):1973–1988

    Article  CAS  PubMed  Google Scholar 

  • Chicharro-Luna E, Pomares-Gomez FJ, Ortega-Avila AB, Cohena-Jimenez M, Gijon-Nogueron G (2019) Variability in the clinical diagnosis of diabetic peripheral neuropathy. Prim Care Diabetes

  • Feldman EL (2003) Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J Clin Invest 111(4):431–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford-Perriss M, Abud H, Murphy M (2001) Fibroblast growth factors in the developing central nervous system. Clin Exp Pharmacol Physiol 28(7):493–503

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez AM, Berry M, Maher PA, Logan A, Baird A (1995) A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res 701(1–2):201–226

    Article  CAS  PubMed  Google Scholar 

  • Goss JR, Goins WF, Lacomis D, Mata M, Glorioso JC, Fink DJ (2002) Herpes simplex-mediated gene transfer of nerve growth factor protects against peripheral neuropathy in streptozotocin-induced diabetes in the mouse. Diabetes 51(7):2227–2232

    Article  CAS  PubMed  Google Scholar 

  • Hao RH, Guo Y, Dong SS, Weng GZ, Yan H, Zhu DL, Chen XF, Chen JB, Yang TL (2016) Associations of plasma FGF2 levels and polymorphisms in the FGF2 gene with obesity phenotypes in Han Chinese population. Sci Rep 6:19868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellweg R, Raivich G, Hartung HD, Hock C, Kreutzberg GW (1994) Axonal transport of endogenous nerve growth factor (NGF) and NGF receptor in experimental diabetic neuropathy. Exp Neurol 130(1):24–30

    Article  CAS  PubMed  Google Scholar 

  • Johnatty SE, Beesley J, Chen X, Spurdle AB, Defazio A, Webb PM, Australian Ovarian Cancer Study G, Australian Cancer S, Goode EL, Rider DN et al (2009) Polymorphisms in the FGF2 gene and risk of serous ovarian cancer: results from the ovarian cancer association consortium. Twin Res Hum Genet 12(3):269–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato N, Nemoto K, Nakanishi K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T, Fujikawa K (2005) Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes 54(3):846–854

    Article  CAS  PubMed  Google Scholar 

  • Lei SF, Papasian CJ, Deng HW (2011) Polymorphisms in predicted miRNA binding sites and osteoporosis. J Bone Miner Res 26(1):72–78

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237(4819):1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang H, Ma L, Han Y, Xu M, Wang Z, Jiang H, Zhang W, Wang L, Pan Y (2016) Associations between microRNA binding site SNPs in FGFs and FGFRs and the risk of non-syndromic orofacial cleft. Sci Rep 6:31054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HJ, Wan L, Tsai Y, Liu SC, Chen WC, Tsai SW, Tsai FJ (2009) Sclera-related gene polymorphisms in high myopia. Mol Vis 15:1655–1663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llewelyn JG (2003) The diabetic neuropathies: types, diagnosis and management. J Neurol Neurosurg Psychiatry 74(Suppl 2):ii15–ii19

    PubMed  PubMed Central  Google Scholar 

  • Masaki I, Yonemitsu Y, Yamashita A, Sata S, Tanii M, Komori K, Nakagawa K, Hou X, Nagai Y, Hasegawa M, Sugimachi K, Sueishi K (2002) Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 90(9):966–973

    Article  CAS  PubMed  Google Scholar 

  • Merighi A (2016) Targeting the glial-derived neurotrophic factor and related molecules for controlling normal and pathologic pain. Expert Opin Ther Targets 20(2):193–208

    Article  CAS  PubMed  Google Scholar 

  • Nakae M, Kamiya H, Naruse K, Horio N, Ito Y, Mizubayashi R, Hamada Y, Nakashima E, Akiyama N, Kobayashi Y, Watarai A, Kimura N, Horiguchi M, Tabata Y, Oiso Y, Nakamura J (2006) Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats. Diabetes 55(5):1470–1477

    Article  CAS  PubMed  Google Scholar 

  • Onimaru M, Yonemitsu Y, Tanii M, Nakagawa K, Masaki I, Okano S, Ishibashi H, Shirasuna K, Hasegawa M, Sueishi K (2002) Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 91(10):923–930

    Article  CAS  PubMed  Google Scholar 

  • Schratzberger P, Walter DH, Rittig K, Bahlmann FH, Pola R, Curry C, Silver M, Krainin JG, Weinberg DH, Ropper AH, Isner JM (2001) Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 107(9):1083–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E, Bibikova M, Chudin E, Barker DL, Dickinson T, Fan JB, Hudson TJ (2008) Differential allelic expression in the human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Genet 4(2):e1000006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomlinson DR, Fernyhough P, Diemel LT (1997) Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes 46(Suppl 2):S43–S49

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi N, Yonemitsu Y, Shikada Y, Onimaru M, Tanii M, Okano S, Kaneko K, Hasegawa M, Hashizume M, Maehara Y, Sueishi K (2004) Essential role of PDGFRalpha-p70S6K signaling in mesenchymal cells during therapeutic and tumor angiogenesis in vivo: role of PDGFRalpha during angiogenesis. Circ Res 94(9):1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Unsicker K (2013) Neurotrophic molecules in the treatment of neurodegenerative disease with focus on the retina: status and perspectives. Cell Tissue Res 353(2):205–218

    Article  CAS  PubMed  Google Scholar 

  • Volchegorskii IA (2017) Systematic review of treatments for diabetic peripheral neuropathy: lost in translation. Diabet Med 34(6):866–867

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang Y, Ye J, Lu X, Cheng Y, Xiang L, Chen L, Feng W, Shi H, Yu X, Lin L, Zhang H, Xiao J, Li X (2015a) bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med 19(3):595–607

    Article  CAS  PubMed  Google Scholar 

  • Wang ZG, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng WK, Liu YL, Ji KT, Zhang HY, Fu XB, Li XK, Chu MP, Xiao J (2015b) bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci Rep 5:9287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong N, Yang H, Liu L, Xiong J, Zhang Z, Zhang X, Jia M, Huang J, Zhang Z, Mohamed AA, Lin Z, Wang T (2013) bFGF promotes the differentiation and effectiveness of human bone marrow mesenchymal stem cells in a rotenone model for Parkinson's disease. Environ Toxicol Pharmacol 36(2):411–422

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu Y, Tu J, Wan J, Zhang J, Wu B, Chen S, Zhou J, Mu Y, Wang L (2014) Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF. Nat Commun 5:5627

    Article  PubMed  PubMed Central  Google Scholar 

  • Yen JH, Chang CM, Hsu YW, Lee CH, Wu MS, Hwang DY, Chen BK, Liao HT, Wu MT, Chang WC (2014) A polymorphism of ORAI1 rs7135617, is associated with susceptibility to rheumatoid arthritis. Mediat Inflamm 2014:834831

    Article  CAS  Google Scholar 

  • Zhao H, Zuo X, Ren L, Li Y, Tai H, Du J, Xie X, Zhang X, Han Y, Wu Y et al (2019) Combined use of bFGF/EGF and all-trans-retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells. Neurosci Lett 690:61–68

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Zhu S, Chang S, Cao Y, Dong J, Li J, Long R, Zhou Y (2013) Protective effects of chronic resveratrol treatment on vascular inflammatory injury in steptozotocin-induced type 2 diabetic rats: role of NF-kappa B signaling. Eur J Pharmacol 720(1–3):147–157

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Xiao, G., Luo, C. et al. Correlation Between SNPs at the 3'UTR of the FGF2 Gene and Their Interaction with Environmental Factors in Han Chinese Diabetic Peripheral Neuropathy Patients. J Mol Neurosci 71, 203–214 (2021). https://doi.org/10.1007/s12031-020-01641-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01641-5

Keywords

Navigation