Skip to main content
Log in

Association of Dopamine Transporter Gene with Heroin Dependence in an Indian Subpopulation from Manipur

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Dopamine transporter (DAT) or solute carrier family 6 member 3 (SLC6A3) is a transmembrane protein regulating dopaminergic neurotransmission. It has been implicated in playing important roles in the dopaminergic reward pathways, and thus, DAT1 is a strong candidate gene for association studies with heroin dependence. A case-control study involving 279 individuals (147 controls and 132 heroin-dependent cases) was conducted. Ten polymorphisms of the DAT1 (SLC6A3) gene were analysed for its association with heroin dependence. Following the Hardy-Weinberg equilibrium (HWE) test, genetic association analyses were performed for the study groups. The post hoc statistical power of the study was 0.655 (65.5%). Single-nucleotide polymorphism (SNP) rs246997 was found to be significantly associated with heroin dependence at allelic, genotypic, and haplotypic levels. A significant difference in the distribution of 11R allele and 10R/11R genotype of rs28363170 between heroin-dependent cases and controls was also observed. Nominal significance at degrees of freedom (df) = 5 was also observed for rs28363170. Five bimarker-based haplotype combinations were also found to be associated with heroin dependence. For the first time, 13R allele (7R/13R genotype) and 14R allele (7R/14R genotype) were identified for rs3836790 in the population. The study also reports that the 11R allele and 10R/11R genotype of rs28363170 is associated with protection against heroin dependence. 7R and 6R alleles were also found to be the common alleles of rs3836790 in the study population. The study provides evidence for the association of polymorphisms of DAT1 (SLC6A3) with heroin dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed M, Haq I, Faisal M, Waseem D, Taqi MM (2018) Implication of OPRM1 A118G polymorphism in opioids addicts in Pakistan: in vitro and in silico analysis. J Mol Neurosci 65:472–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association: Diagnostic and Statiscal Manual of Mental Disorders (1994) 4th edn. Washington, DC

  • Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P (2001) The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol 11:449–455

    CAS  PubMed  Google Scholar 

  • Barret JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Google Scholar 

  • Beyer A, Koch T, Schroder H, Schulz S, Hollt V (2004) Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J Neurochem 89:553–560

    CAS  PubMed  Google Scholar 

  • Bhaskar LVKS, Thangaraj K, Wasnik S, Singh L, Rao VR, Dopamine transporter (DAT1) VNTR (2012) Polymorphism and alcoholism in two culturally different populations of South India. Am J Addict 21:343–347

    PubMed  Google Scholar 

  • Blum K, Chen AL, Chen TJ, Braverman ER, Reinking J, Blum SH, Cassel K, Downs BW, Waite RL, Williams L, Prihoda TJ, Kerner MM, Palomo T, Comings DE, Tung H, Rhoades P, Oscar-Berman M (2008) Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): a commentary. Theor Biol Med Model 5:24. https://doi.org/10.1186/1742-4682-5-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer AJ, Nielsen DA, Spellicy CJ, Hamon SC, Gingrich J, Thompson-Lake DGY, Nielsen EM, Mahoney JJ, Kosten TR, Newton TF, De La Garza R (2015) Genetic variation of the dopamine transporter (DAT1) influences the acute subjective responses to cocaine in volunteers with cocaine use disorders. Pharmacogenet Genomics 25:296–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dang W, Zhang Q, Zhu Y-S, Lu X-Y (2014) The evidence for the contribution of the autism susceptibility candidate 2 (AUTS2) gene in heroin dependence susceptibility. J Mol Neurosci 54:811–819

    CAS  PubMed  Google Scholar 

  • Dreher JC, Kohna P, Kolachana B, Weinberger DR, Berman KF (2009) Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci U S A 106:617–622

    CAS  PubMed  Google Scholar 

  • Dudbridge F (2008) Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66:87–98

    PubMed  Google Scholar 

  • Easton AC, Lourdusamy A, Havranek M, Mizuno K, Solati J, Golub Y, Clarke T-K, Vallada H, Laranjeira R, Desrivières S, Moll GH, Mössner R, Kornhuber J, Schumann G, Giese KP, Fernandes C, Quednow BB, Müller CP (2014) αCaMKII controls the establishment of cocaine’s reinforcing effects in mice and humans. Transl Psychiatry 4:e457. https://doi.org/10.1038/tp.2014.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    CAS  PubMed  Google Scholar 

  • Gadow KD, Pinsonneault J, Perlman G, Sadee W (2014) Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder. Res Dev Disabil 35:1658–1665

    PubMed  PubMed Central  Google Scholar 

  • Gelernter J, Kranzler HR, Satel SL, Rao PA (1994) Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology 191:195–200

    Google Scholar 

  • Giros B, el Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390

    CAS  PubMed  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    CAS  PubMed  Google Scholar 

  • Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, Ammar N, Craig I, O’Gara C, Bubb VJ, Greenwood T, Kelsoe J, Asherson P, Murray RM, Castelo A, Quinn JP, Vallada H, Breen G (2006) A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci U S A 103:4552–4557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382

    CAS  PubMed  Google Scholar 

  • Hou QF, Li SB (2009) Potential association of DRD2 and DAT1 genetic variation with heroin dependence. Neurosci Lett 464:127–130

    CAS  PubMed  Google Scholar 

  • Janeczek P, MacKay RK, Lea RA, Dodd PR, Lewohl JM (2014) Reduced expression of α-synuclein in alcoholic brain: influence of SNCA-Rep1 genotype. Addict Biol 19:509–515

    CAS  PubMed  Google Scholar 

  • Kim WT, Lee SR, Roh YG, Kim S, Choi YH, Mun MH, Jeong MS, Koh SS, Leem SH (2017) Characterization of VNTRs within the entire region of SLC6A3 and its association with hypertension. DNA Cell Biol 36:1–10

    Google Scholar 

  • Kobayashi S, Schultz W (2008) Influence of reward delays on responses of dopamine neurons. J Neurosci 28:7837–7846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koijam AS, Chakraborty B, Mukhopadhyay K, Rajamma U, Haobam R (2020) A single nucleotide polymorphism in OPRM1 (rs483481) and risk for heroin use disorder. J Addict Dis 38:214–222. https://doi.org/10.1080/10550887.2020.1740070

    Article  PubMed  Google Scholar 

  • Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsychiatry Clin Neurosci 9:482–497

    CAS  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    CAS  PubMed  Google Scholar 

  • Le Strat Y, Ramoz N, Pickering P, Burger V, Boni C, Aubin H, Ade’s J, Batel P, Gorwood P (2008) The 3′ part of the dopamine transporter gene DAT1/SLC6A3 is associated with withdrawal seizures in patients with alcohol dependence. Alcohol Clin Exp Res 32:1–9

    Google Scholar 

  • Lehrmann E, Colantuoni C, Deep-Soboslay A, Becker KG, Lowe R, Huestis MA, Hyde TM, Kleinman JE, Freed WJ (2006) Transcriptional changes common to human cocaine, cannabis and phencyclidine abuse. PLoS One 1(1):e114. https://doi.org/10.1371/journal.pone.0000114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levran O, Randesi M, daRosa JC, Ott J, Rotrosen J, Adelson M, Kreek MJ (2015) Overlapping dopaminergic pathway genetic susceptibility to heroin and cocaine addictions in African Americans. Ann Hum Genet 79:188–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Yuan W, Cui W, Li MD (2016) Meta-analysis reveals significant association of 3′-UTR VNTR in SLC6A3 with smoking cessation in Caucasian populations. Pharmacogenomics J 16:10–17

    CAS  PubMed  Google Scholar 

  • McLaren W, Laurent G, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F (2016) The Ensembl Variant Effect Predictor. Genome Biol 17:122. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • National Institute on Drug Abuse (2010) Drugs, brains and behavior. The Science of Addiction. NIH Publication No. 10–5605. National Institute of Health, Bethesda

    Google Scholar 

  • NCBI Database. https://www.ncbi.nlm.nih.gov/gene/6531

  • Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK, Gu HH, Sadee W (2011) Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. Neuropsychopharmacology 36(8):1644–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee SH, Hewitt JK, Young SE, Corley RP, Crowley TJ, Stallings MC (2003) Genetic and environmental influences on substance initiation, use and problem use in adolescents. Arch Gen Psychiatry 60:1256–1264

    PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2008) The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond Ser B Biol Sci 363:3137–3146

    Google Scholar 

  • Sander T, Harms H, Podschus J, Finckh U, Nickel B, Rolfs A, Rommelspacher H, Schimidt LG (1997) Allelic association of a dopamine transporter gene polymorphism in alcohol dependence with withdrawal seizures or delirium. Biol Psychiatry 41:299–304

    CAS  PubMed  Google Scholar 

  • Saraswathy KN, Kiranmala N, Murry B, Sinha E, Saksena D, Kaur H, Sachdeva MP, Kalla AK (2009) A genomic insight into the diversity among tribal and non-tribal population groups of Manipur. Biochem Genet 47:694–706

    CAS  PubMed  Google Scholar 

  • Spronk DB, Van der Schaaf ME, Cools R, De Bruijn ERA, Franke B, van Wel JHP, Ramaekers JG, Verkes RJ (2016) Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype. Psychopharmacology 233:199–211

    CAS  PubMed  Google Scholar 

  • Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69:628–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  • van der Velde KJ, de Boer EN, van Diemen CC, Sikkema-Raddatz B, Abbott KM, Knopperts A, Franke L, Sijmons RH, de Koning TJ, Wijmenga C, Sinke RJ, Swertz MA (2017) GAVIN: gene-aware variant INterpretation for medical sequencing. Genome Biol 18:6. https://doi.org/10.1186/s13059-016-1141-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14:1104–1106

    CAS  PubMed  Google Scholar 

  • Vasconcelos ACCG, Neto ESR, Pinto GR, Yoshioka FKN, Motta FJN, Vasconcelos DFP, Canalle R (2015) Association study of the SLC6A3 VNTR (DAT) and DRD2/ANKK1 Taq1A polymorphisms with alcohol dependence in a population from northeastern Brazil. Alcohol Clin Exp Res 39:205–211

    CAS  PubMed  Google Scholar 

  • Vereczkei A, Demetrovics Z, Szekely A, Sarkozy P, Antal P, Szilagyi A, Sasvari-Szekely M, Barta C (2013) Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS One 8:e66592. https://doi.org/10.1371/journal.pone.0066592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Wang GJ, Tomasi D, Baler RD (2013) Obesity and addiction: neurobiological overlaps. Obes Rev 14:2–18. https://doi.org/10.1111/j.1467-789X.2012.01031.x

    Article  CAS  PubMed  Google Scholar 

  • Wetherill RR, Jagannathan K, Lohoff FW, Ehrman R, O’Brien CP, Childress AR, Franklin TR (2014) Neural correlates of attentional bias for smoking cues: modulation by variance in the dopamine transporter gene. Addict Biol 19:294–304

    CAS  PubMed  Google Scholar 

  • Xie P, Wang T, Yin G, Yan Y, Xiao L, Li Q, Bi K (2015) Metabonomic study of biochemical changes in human hair of heroin abusers by liquid chromatography coupled with ion trap-time of flight mass spectrometry. J Mol Neurosci 58:93–101

    PubMed  Google Scholar 

  • Yeh FC, Yang R-C, Boyle TB, Ye Z, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada, p 10

    Google Scholar 

  • Yeh YW, Lu RB, Tao PL, Shih MC, Lin WW, Huang SY (2010) Neither single-marker nor haplotype analyses support an association between the dopamine transporter gene and heroin dependence in Han Chinese. Genes, Brain Behav 9:638–647

    CAS  Google Scholar 

  • Zhou Y, Michelhaugh SK, Schmidt CJ, Liu JS, Bannon MJ, Lin Z (2014) Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addict Biol 19:122–131

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Social Awareness Service Organization (SASO), Imphal, and all the participants in the study.

Funding

The present study is supported by the Department of Biotechnology (DBT), Govt. of India grant to Reena Haobam and Usha Rajamma vide BT/251/NE/TBP/2011 dated 14.5.2012. Arunkumar Singh Koijam worked for this project as Junior Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

Reena Haobam, Usha Rajamma, and Kanchan Mukhopadhyay conceived, designed, and supervised the work; Arunkumar Singh Koijam performed research work; Aruna Chanu Hijam and Preeti Jaiswal assisted in research work; Arunkumar Singh Koijam and Asem Surindro Singh analysed data; Arunkumar Singh Koijam and Reena Haobam prepared the manuscript for publication. All the authors read and agreed to the manuscript.

Corresponding author

Correspondence to Reena Haobam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in the study were per the ethical standards of the Institutional Human Ethics Committee, Manipur University, and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koijam, A.S., Hijam, A.C., Singh, A.S. et al. Association of Dopamine Transporter Gene with Heroin Dependence in an Indian Subpopulation from Manipur. J Mol Neurosci 71, 122–136 (2021). https://doi.org/10.1007/s12031-020-01633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01633-5

Keywords

Navigation