Skip to main content
Log in

Targeting Inflammation, PHA-767491 Shows a Broad Spectrum in Protein Aggregation Diseases

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Many protein aggregation diseases (PAD) affect the nervous system. Deposits of aggregated disease-specific proteins are found within or around the neuronal cells of neurodegenerative diseases. Although the main protein component is disease-specific, oligomeric aggregates are presumed to be the key agents causing the neurotoxicity. Evidence has shown that protein aggregates cause a chronic inflammatory reaction in the brain, resulting in neurodegeneration. Therefore, strategies targeting anti-inflammation could be beneficial to the therapeutics of PAD. PHA-767491 was originally identified as an inhibitor of CDC7/CDK9 and was found to reduce TDP-43 phosphorylation and prevent neurodegeneration in TDP-43 transgenic animals. We recently identified PHA-767491 as a GSK-3β inhibitor. In this study, we established mouse hippocampal primary culture with tau-hyperphosphorylation through the activation of GSK-3β using Wortmannin and GF109203X. We found that PHA-767491 significantly improved the neurite outgrowth of hippocampal primary neurons against the neurotoxicity induced by GSK-3β. We further showed that PHA-767491 had neuroprotective ability in hippocampal primary culture under oligomeric Aβ treatment. In addition, PHA-767491 attenuated the neuroinflammation in mouse cerebellar slice culture with human TBP-109Q agitation. Further study of SCA17 transgenic mice carrying human TBP-109Q showed that PHA-767491 ameliorated the gait ataxia and the inflammatory response both centrally and peripherally. Our findings suggest that PHA-767491 has a broad spectrum of activity in the treatment of different PAD and that this activity could be based on the anti-inflammation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ANOVA:

analysis of variance

DIV:

days in vitro

DRPLA:

dentatorubral-pallidoluysian atrophy

FDA:

Food and Drug Administration

GFAP:

glial fibrillary acidic protein

GRAS:

generally recognized as safe

HD:

Huntington’s disease

LSD:

least significant difference

PD:

Parkinson’s disease

polyQ:

polyglutamine

SBMA:

spinal and bulbar muscular atrophy

SCA:

spinocerebellar ataxias

SCA17:

spinocerebellar ataxia type 17

TBP:

TATA box-binding protein

TBS:

tris-buffered saline

TG:

transgenic

WT:

wild-type

References

  • Aguzzi A, O'Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–248

    PubMed  CAS  Google Scholar 

  • Bellettato CM, Scarpa M (2018) Possible strategies to cross the blood-brain barrier. Ital J Pediatr 44:131

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bruni AC, Takahashi-Fujigasaki J, Maltecca F, Foncin JF, Servadio A, Casari G, D'Adamo P, Maletta R, Curcio SA, De Michele G, Filla A, El Hachimi KH, Duyckaerts C (2004) Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol 61:1314–1320

    PubMed  Google Scholar 

  • Cai Z, Zhao Y, Zhao B (2012) Roles of glycogen synthase kinase 3 in Alzheimer’s disease. Curr Alzheimer Res 9:864–879

    PubMed  CAS  Google Scholar 

  • Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Hsieh-Li HM (2011) Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. J Neurochem 118:288–303

    PubMed  CAS  Google Scholar 

  • Chang YC, Lin CW, Hsu CM, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Huang HJ, Hsieh-Li HM (2016) Targeting the prodromal stage of spinocerebellar ataxia type 17 mice: G-CSF in the prevention of motor deficits via upregulating chaperone and autophagy levels. Brain Res 1639:132–148

    PubMed  CAS  Google Scholar 

  • Chen ZZ, Wang CM, Lee GC, Hsu HC, Wu TL, Lin CW, Ma CK, Lee-Chen GJ, Huang HJ, Hsieh-Li HM (2015) Trehalose attenuates the gait ataxia and gliosis of spinocerebellar ataxia type 17 mice. Neurochem Res 40:800–810

    PubMed  CAS  Google Scholar 

  • Chen CM, Chen WL, Hung CT, Lin TH, Chao CY, Lin CH, Wu YR, Chang KH, Yao CF, Lee-Chen GJ, Su MT, Hsieh-Li HM (2018) The indole compound NC009-1 inhibits aggregation and promotes neurite outgrowth through enhancement of HSPB1 in SCA17 cells and ameliorates the behavioral deficits in SCA17 mice. Neurotoxicology 67:259–269

    PubMed  CAS  Google Scholar 

  • Chen CM, Chen WL, Hung CT, Lin TH, Lee MC, Chen IC, Lin CH, Chao CY, Wu YR, Chang KH, Hsieh-Li HM, Lee-Chen GJ (2019) Shaoyao Gancao Tang (SG-Tang), a formulated Chinese medicine, reduces aggregation and exerts neuroprotection in spinocerebellar ataxia type 17 (SCA17) cell and mouse models. Aging (Albany NY) 11:986–1007

    CAS  Google Scholar 

  • Dong X (2018) Current strategies for brain drug delivery. Theranostics. 8:1481–1493

    PubMed  PubMed Central  CAS  Google Scholar 

  • Erbayraktar Z, Alural B, Erbayraktar RS, Erkan EP (2016) Cell division cycle 7-kinase inhibitor PHA-767491 hydrochloride suppresses glioblastoma growth and invasiveness. Cancer Cell Int 16:88

    PubMed  PubMed Central  Google Scholar 

  • Evert BO, Vogt IR, Kindermann C, Ozimek L, de Vos RA, Brunt ER, Schmitt I, Klockgether T, Wullner U (2001) Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 21:5389–5396

    PubMed  PubMed Central  CAS  Google Scholar 

  • Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10:1519–1528

    PubMed  CAS  Google Scholar 

  • Gostout B, Liu Q, Sommer SS (1993) “Cryptic” repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet 52:1182–1190

    PubMed  PubMed Central  CAS  Google Scholar 

  • Han Y, Zhan Y, Hou G, Li L (2014) Cyclin-dependent kinase 9 may as a novel target in downregulating the atherosclerosis inflammation (review). Biomed Rep 2:775–779

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hsu CJ, Hsu WC, Lee DJ, Liu AL, Chang CM, Shih HJ, Huang WH, Lee-Chen GJ, Hsieh-Li HM, Lee GC, Sun YC (2017) Investigation of the bindings of a class of inhibitors with GSK3beta kinase using thermodynamic integration MD simulation and kinase assay. Chem Biol Drug Des 90:272–281

    PubMed  CAS  Google Scholar 

  • Huang HJ, Chen SL, Hsieh-Li HM (2015) Administration of NaHS attenuates footshock—induced pathologies and emotional and cognitive dysfunction in triple transgenic Alzheimer’s mice. Front Behav Neurosci 9:312

    PubMed  PubMed Central  Google Scholar 

  • Huang C, Irwin MG, Wong GTC, Chang RCC (2018a) Evidence of the impact of systemic inflammation on neuroinflammation from a non-bacterial endotoxin animal model. J Neuroinflammation 15:147

    PubMed  PubMed Central  Google Scholar 

  • Huang HJ, Chen SL, Chang YT, Chyuan JH, Hsieh-Li HM (2018b) Administration of Momordica charantia enhances the neuroprotection and reduces the side effects of LiCl in the treatment of Alzheimer's disease. Nutrients 10

  • Huang HJ, Chen SL, Huang HY, Sun YC, Lee GC, Lee-Chen GJ, Hsieh-Li HM, Su MT (2018c) Chronic low dose of AM404 ameliorates the cognitive impairment and pathological features in hyperglycemic 3xTg-AD mice. Psychopharmacology

  • Huang HJ, Huang HY, Hsieh-Li HM (2018d) MGCD0103, a selective histone deacetylase inhibitor, coameliorates oligomeric Abeta25-35 -induced anxiety and cognitive deficits in a mouse model. CNS Neurosci Ther

  • Huang HJ, Chen SL, Huang HY, Sun YC, Lee GC, Lee-Chen GJ, Hsieh-Li HM, Su MT (2019a) Chronic low dose of AM404 ameliorates the cognitive impairment and pathological features in hyperglycemic 3xTg-AD mice. Psychopharmacology 236:763–773

    PubMed  CAS  Google Scholar 

  • Huang HJ, Huang HY, Hsieh-Li HM (2019b) MGCD0103, a selective histone deacetylase inhibitor, coameliorates oligomeric Abeta25-35 -induced anxiety and cognitive deficits in a mouse model. CNS Neurosci Ther 25:175–186

    PubMed  CAS  Google Scholar 

  • Huggett MT, Tudzarova S, Proctor I, Loddo M, Keane MG, Stoeber K, Williams GH, Pereira SP (2016) Cdc7 is a potent anti-cancer target in pancreatic cancer due to abrogation of the DNA origin activation checkpoint. Oncotarget 7:18495–18507

    PubMed  PubMed Central  Google Scholar 

  • Kamer AR (2010) Systemic inflammation and disease progression in Alzheimer disease. Neurology 74:1157 author reply 1157-8

    PubMed  Google Scholar 

  • Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D (1999) Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci U S A 96:11404–11409

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kiss L, Bocsik A, Walter FR, Ross J, Brown D, Mendenhall BA, Crews SR, Lowry J, Coronado V, Thompson DE, Sipos P, Szabo-Revesz P, Deli MA, Petrikovics I (2017) From the cover: in vitro and in vivo blood-brain barrier penetration studies with the novel cyanide antidote candidate dimethyl trisulfide in mice. Toxicol Sci 160:398–407

    PubMed  CAS  Google Scholar 

  • Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8:2047–2053

    PubMed  CAS  Google Scholar 

  • Kung PJ, Tao YC, Hsu HC, Chen WL, Lin TH, Janreddy D, Yao CF, Chang KH, Lin JY, Su MT, Wu CH, Lee-Chen GJ, Hsieh-Li HM (2014) Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models. Drug Des Devel Ther 8:1929–1939

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zuhlke C, Nitschke MF, Brockmann K, Klein C, Rolfs A, Binkofski F (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341–2352

    PubMed  CAS  Google Scholar 

  • Li X, Lu F, Tian Q, Yang Y, Wang Q, Wang JZ (2006) Activation of glycogen synthase kinase-3 induces Alzheimer-like tau hyperphosphorylation in rat hippocampus slices in culture. J Neural Transm (Vienna) 113:93–102

    CAS  Google Scholar 

  • Li Q, Xie W, Wang N, Li C, Wang M (2018) CDC7-dependent transcriptional regulation of RAD54L is essential for tumorigenicity and radio-resistance of glioblastoma. Transl Oncol 11:300–306

    PubMed  PubMed Central  Google Scholar 

  • Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC (2013) CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol 74:39–52

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, Wang L, Lv M, Pei R, Li P, Pei Z, Wang Y, Su W, Xie XQ (2014) AlzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 54:1050–1060

    PubMed  PubMed Central  CAS  Google Scholar 

  • Llorens-Martin M, Jurado J, Hernandez F, Avila J (2014) GSK-3beta, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 7:46

    PubMed  Google Scholar 

  • McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21:195–218

    PubMed  CAS  Google Scholar 

  • Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15:4671–4713

    PubMed  PubMed Central  Google Scholar 

  • Moller T (2010) Neuroinflammation in Huntington’s disease. J Neural Transm 117:1001–1008

    PubMed  Google Scholar 

  • Montagnoli A, Valsasina B, Croci V, Menichincheri M, Rainoldi S, Marchesi V, Tibolla M, Tenca P, Brotherton D, Albanese C, Patton V, Alzani R, Ciavolella A, Sola F, Molinari A, Volpi D, Avanzi N, Fiorentini F, Cattoni M, Healy S, Ballinari D, Pesenti E, Isacchi A, Moll J, Bensimon A, Vanotti E, Santocanale C (2008) A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat Chem Biol 4:357–365

    PubMed  CAS  Google Scholar 

  • Muhleisen H, Gehrmann J, Meyermann R (1995) Reactive microglia in Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 21:505–517

    PubMed  CAS  Google Scholar 

  • Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441–1448

    PubMed  CAS  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reichel A (2009) Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers 6:2030–2049

    PubMed  CAS  Google Scholar 

  • Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012:756357

    PubMed  PubMed Central  Google Scholar 

  • Ryan P, Xu M, Davey AK, Danon JJ, Mellick GD, Kassiou M, Rudrawar S (2019) O-GlcNAc modification protects against protein misfolding and aggregation in neurodegenerative disease. ACS Chem Neurosci 10:2209–2221

    PubMed  CAS  Google Scholar 

  • Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60:161–172

    PubMed  CAS  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    PubMed  CAS  Google Scholar 

  • Schmerwitz UK, Sass G, Khandoga AG, Joore J, Mayer BA, Berberich N, Totzke F, Krombach F, Tiegs G, Zahler S, Vollmar AM, Furst R (2011) Flavopiridol protects against inflammation by attenuating leukocyte-endothelial interaction via inhibition of cyclin-dependent kinase 9. Arterioscler Thromb Vasc Biol 31:280–288

    PubMed  CAS  Google Scholar 

  • Shen J, Kelleher RJ 3rd (2007) The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A 104:403–409

    PubMed  CAS  Google Scholar 

  • Silva A, de Almeida AV, Macedo-Ribeiro S (2018) Polyglutamine expansion diseases: more than simple repeats. J Struct Biol 201:139–154

    PubMed  CAS  Google Scholar 

  • Stanimirovic DB, Sandhu JK, Costain WJ (2018) Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier. BioDrugs. 32:547–559

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007a) Imaging microglial activation in Huntington’s disease. Brain Res Bull 72:148–151

    PubMed  CAS  Google Scholar 

  • Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007b) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766

    PubMed  Google Scholar 

  • Takeuchi T, Nagai Y (2017) Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases. Brain Sci 7

  • Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, Morita M, Tsuji S, Takahashi H (2004) SCA17 homozygote showing Huntington’s disease-like phenotype. Ann Neurol 55:281–286

    PubMed  CAS  Google Scholar 

  • van Rossum D, Hanisch UK (2004) Microglia. Metab Brain Dis 19:393–411

    PubMed  Google Scholar 

  • Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–432

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our gratitude is extended to the Molecular Imaging Core Facility of the National Taiwan Normal University under the auspices of the Ministry of Science and Technology.

Funding

This work was supported by research grants MOST 107-2320-B-003-007, 107-2320-B-003-009, and 104-2320-B-003-009-MY3 from the Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Ching Chang or Hsiu Mei Hsieh-Li.

Ethics declarations

All of the animal experiments were conducted according to the guidelines and were approved by the Research Committee of the National Taiwan Normal University (No. 103022).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YH., Lin, CW., Huang, HY. et al. Targeting Inflammation, PHA-767491 Shows a Broad Spectrum in Protein Aggregation Diseases. J Mol Neurosci 70, 1140–1152 (2020). https://doi.org/10.1007/s12031-020-01521-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01521-y

Keywords

Navigation