Skip to main content
Log in

Phosphomimetic Mutation of Glycine Transporter GlyT1 C-Terminal PDZ Binding Motif Inhibits its Interactions with PSD95

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

A Correction to this article was published on 09 January 2020

This article has been updated

ABSTRACT

Even though the abundance of GlyT1 in postsynaptic aspects of forebrain neurons is low, its previously reported interaction with postsynaptic density protein PSD95 represents a prototype of interaction, which might uncover the binding mechanism and regulation of the GlyT1 C-terminal PDZ motif. We used a phosphomimetic approach to mimic the potential phosphorylation of GlyT1 C-terminal serines 640, 643, 644, and 649 of the mouse GlyT1b subtype (mGlyT1b) (Uniprot P28571-2) and its effect on GlyT1-PSD95 PDZ interaction. Among them, only phosphomimetic mutation of serine 649 to aspartate, which resides in the minimal PDZ motif -SRI, significantly eliminated the interaction of the GlyT1 C-terminus with PSD95 PDZ domain 2. The effect was observed with recombinant fusion proteins as well as with GlyT1 and PSD95 expressed in tissue culture. Results indicate that phosphorylation of mouse GlyT1b serine 649 and equivalent serines of GlyT1a and GlyT1c subtypes might regulate the PDZ interaction of the GlyT1 C-terminal PDZ binding motif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 09 January 2020

    The original version of this article unfortunately contained two mistakes.

References

  • Baliova M, Jursky F (2005) Calpain sensitive regions in the N-terminal cytoplasmic domains of glycine transporters GlyT1A and GlyT1B. Neurochem Res 30:1093–1100

    Article  CAS  Google Scholar 

  • Baliova M, Jursky F (2010) Calcium dependent modification of distal C-terminal sequences of glycine transporter GlyT1. Neurochem Int 57:254–261

    Article  CAS  Google Scholar 

  • Baliova M, Jursky F (2018) Specific glycine to alanine mutation eliminates dynamic interaction of polymeric GlyT1a N-terminus with Coomassie brilliant blue G-250. Electrophoresis 39:1357–1360

    Article  CAS  Google Scholar 

  • Baliova M, Jursky F (2019) Similarity of Coomassie dye spectral absorbance dynamic of sequentially distant polymeric n-terminal segments of glycine and GABA transporters. ChemistrySelect 4:6304–6308

    Article  CAS  Google Scholar 

  • Baliova M, Betz H, Jursky F (2004) Calpain-mediated proteolytic cleavage of the neuronal glycine transporter, GlyT2. J Neurochem 88:227–232

    Article  CAS  Google Scholar 

  • Baliova M, Juhasova A, Jursky F (2014) Using a collection of MUPP1 domains to investigate the similarities of neurotransmitter transporters C-terminal PDZ motifs. Biochem Biophys Res Commun 454:25–29

    Article  CAS  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A 95:15730–15734

    Article  CAS  Google Scholar 

  • Betz H (1992) Structure and function of inhibitory glycine receptors. Q Rev Biophys 25:381–394

    Article  CAS  Google Scholar 

  • Borowsky B, Mezey E, Hoffman BJ (1993) Two glycine transporter variants with distinct localization in the CNS and peripheral tissues are encoded by a common gene. Neuron 10:851–863

    Article  CAS  Google Scholar 

  • Castejón OJ, Fuller L, Dailey ME (2004) Localization of synapsin-I and PSD-95 in developing postnatal rat cerebellar cortex. Brain Res Dev Brain Res 151:25–32

    Article  Google Scholar 

  • Chen L, Muhlhauser M, Yang CR (2003) Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 89:691–703

    Article  CAS  Google Scholar 

  • Coley AA, Gao WJ (2018) PSD95: A synaptic protein implicated in schizophrenia or autism? Prog Neuro-Psychopharmacol Biol Psychiatry 82:187–194

    Article  CAS  Google Scholar 

  • Cubelos B, Giménez C, Zafra F (2005a) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 15:448–459

    Article  Google Scholar 

  • Cubelos B, González-González IM, Giménez C, Zafra F (2005b) The scaffolding protein PSD-95 interacts with the glycine transporter GLYT1 and impairs its internalization. J Neurochem 95:1047–1058

    Article  CAS  Google Scholar 

  • Friedman HV, Bresler T, Garner CC, Ziv NE (2000) Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27:57–69

    Article  CAS  Google Scholar 

  • Fukaya M, Watanabe M (2000) Improved immunohistochemical detection of postsynaptically located PSD-95/SAP90proteinfamily by protease section pretreatment: a study in the adult mouse brain. J Comp Neurol 426:572–586

    Article  CAS  Google Scholar 

  • Gabernet L, Pauly-Evers M, Schwerdel C, Lentz M, Bluethmann H, Vogt K, Alberati D, Mohler H, Boison D (2005) Enhancement of the NMDA receptor function by reduction of glycine transporter-1 expression. Neurosci Lett 373:79–84

    Article  CAS  Google Scholar 

  • Gógl G, Biri-Kovács B, Durbesson F, Jane P, Nomine Y, Kostmann C, Bilics V, Simon M, Reményi A, Vincentelli R, Trave G, Nyitray L (2019) Rewiring of RSK-PDZ interactome by linear motif phosphorylation. J Mol Biol 431:1234–1249

    Article  Google Scholar 

  • Hanley JG, Jones EM, Moss SJ (2000) GABA receptor rho1 subunit interacts with a novel splice variant of the glycine transporter. GLYT-1. J Biol Chem 275:840–846

    Article  CAS  Google Scholar 

  • Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290:1364–1368

    PubMed  Google Scholar 

  • Jeong JH, Song SH, Lim DW, Lee H, Park TG (2001) DNA transfection using linear poly (ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release 73:391–399

    Article  CAS  Google Scholar 

  • Juhasova A, Baliova M, Jursky F (2016) A dynamic interaction of coomassie dye with the glycine transporters N-termini. Protein J 35:371–378

    Article  CAS  Google Scholar 

  • Jursky F, Nelson N (1995) Localization of glycine neurotransmitter transporter (GLYT2) reveals correlation with the distribution of glycine receptor. J Neurochem 64:1026–1033

    Article  CAS  Google Scholar 

  • Jursky F, Nelson N (1996) Developmental expression of the glycine transporters GLYT1 and GLYT2 in mouse brain. J Neurochem 67:336–344

    Article  CAS  Google Scholar 

  • Kim K-M, Kingsmore SF, Han H, Yang-Feng TL, Godinot N, Selding MF, Caron MC, Giros B (1994) Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes. Mol Pharmacol 45:608–617

    CAS  PubMed  Google Scholar 

  • Kistner U, Wenzel BM, Veh RW, Cases-Langhoff C, Garner AM, Appeltauer U, Voss B, Gundelfinger ED, Garner CC (1993) SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J Biol Chem 268:4580–4583

    CAS  PubMed  Google Scholar 

  • Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640

    Article  CAS  Google Scholar 

  • Li Y, Krupa B, Kang JS, Bolshakov VY, Liu G (2009) Glycine site of NMDA receptor serves as a spatiotemporal detector of synaptic activity patterns. J Neurophysiol 102:578–589

    Article  CAS  Google Scholar 

  • Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557:489–500

    Article  CAS  Google Scholar 

  • Massari S, Vanoni C, Longhi R, Rosa P, Pietrini G (2004) Protein kinase C-mediated phosphorylation of the BGT1 epithelial gamma-aminobutyric acid transporter regulates its association with LIN7 PDZ proteins: a post-translational mechanism regulating transporter surface density. J Biol Chem 280:7388–7397

    Article  Google Scholar 

  • Mihalikova A, Baliova M, Jursky F (2014) Effect of phosphomimetic mutations on the C-terminal sensitivity of glycine transporter GlyT1 to calpain. Neurosci Res 81-82:85–91

    Article  CAS  Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E (2015) X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol 22:506–508

    Article  CAS  Google Scholar 

  • Sato K (2018) Why does a steep caudal-rostral gradient exist in glycine content in the brain? Med Hypotheses.120:1-3

    Article  CAS  Google Scholar 

  • Subramanian N, Scopelitti AJ, Carland JE, Ryan RM, O'Mara ML, Vandenberg RJ (2016) Identification of a 3rd Na + binding site of the glycine transporter, GlyT2. PLoS One 11:e0157583

    Article  Google Scholar 

  • Supplisson S, Roux MJ (2002) Why glycine transporters have different stoichiometries. FEBS Let 529:93–101

    Article  CAS  Google Scholar 

  • Zafra F, Aragon C, Olivares L, Danbolt NC, Gimenez C, Storm-matisen J (1995) Glycine transporters are differentially expressed among CNS cells. J Neurosci 15:3952–3969

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by VEGA Grant 2/0066/17.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martina Baliova or Frantisek Jursky.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: This article unfortunately contained two mistakes. In the html version, Figure 1 was missing and was replaced by Figure 2, resulting to identical version of both figures. While in the PDF version, Figures 1 and 2 were inadvertently interchanged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baliova, M., Jursky, F. Phosphomimetic Mutation of Glycine Transporter GlyT1 C-Terminal PDZ Binding Motif Inhibits its Interactions with PSD95. J Mol Neurosci 70, 488–493 (2020). https://doi.org/10.1007/s12031-019-01435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01435-4

Keywords

Navigation