Skip to main content
Log in

Ketamine Regulates Phosphorylation of CRMP2 To Mediate Dendritic Spine Plasticity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Ketamine is widely used in infants and young children for anesthesia, and subanesthetic doses of ketamine make neurons form new protrusions and promote synapse formation. However, the precise pathological mechanisms remain to be elucidated. In this study, we demonstrated that ketamine administration significantly increased dendritic spine density and maturity in rat cortical neurons in vivo and in vitro. Western blot analysis showed that CRMP2 protein expression was significantly increased in cerebral cortex of ketamine group, and phosphorylation levels of CRMP at Thr514 and Ser522 were significantly reduced. Furthermore, overexpression of CRMP2 promoted the growth of cortical neuron processes and dendritic spines. Although the dendritic field was more complex after adding ketamine and the density of dendritic spines increased, there was no statistical difference and no obvious superposition effect was observed. Moreover, both Ser522 mutant construction of CRMP2, GFP-CRMP2-522D, and mcherry-CDK5 showed similar inhibitory effects on neurite outgrowth, which could be rescued by ketamine. The frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were significantly inhibited when GFP-CRMP2-522D and mCherry-CDK5 were transfected into cortical neurons and this trend could also be rescued by ketamine. In general, this study reveals a new mechanism by which ketamine promotes the growth and development of dendritic spines in developing cortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Jitsuki S, Nakajima W, Murata Y, Jitsuki-Takahashi A, Katsuno Y, Tada H, Sano A, Suyama K, Mochizuki N, Komori T, Masuyama H, Okuda T, Goshima Y, Higo N, Takahashi T (2018) CRMP2-binding compound, edonerpic maleate, accelerates motor function recovery from brain damage. Science 360(6384):50–57

    CAS  PubMed  Google Scholar 

  • Ardalan M et al (2016) Neurovascular plasticity of the hippocampus one week after a single dose of ketamine in genetic rat model of depression. Hippocampus 26(11):1414–1423

    CAS  PubMed  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6(11):3414–3425

    CAS  PubMed  Google Scholar 

  • Braunschweig D et al (2013) Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3:e277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha C, Zhang J, Ji Z, Tan M, Li S, Wu F, Chen K, Gong S, Guo G, Lin H (2016) CRMP4 regulates dendritic growth and maturation via the interaction with actin cytoskeleton in cultured hippocampal neurons. Brain Res Bull 124:286–294

    CAS  PubMed  Google Scholar 

  • Choi M, Lee SH, Wang SE, Ko SY, Song M, Choi JS, Kim YS, Duman RS, Son H (2015) Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats. Proc Natl Acad Sci U S A 112(51):15755–15760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, Taylor M, LaFrancois J, Gunn-Moore F, Verkhratsky A, Oddo S, LaFerla F, Giese KP, Dineley KT, Duff K, Richardson JC, Yan SD, Hanger DP, Allan SM, Sutherland C (2007) Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 103(3):1132–1144

    CAS  PubMed  Google Scholar 

  • De Roo M et al (2009) Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS One 4(9):e7043

    PubMed  PubMed Central  Google Scholar 

  • Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J (2015) Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol 130(1):1–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghani MU et al (2017) Dendritic spine classification using shape and appearance features based on two-photon microscopy. J Neurosci Methods 279(Complete):13–21

    PubMed  Google Scholar 

  • Gipson CD, Olive MF (2017) Structural and functional plasticity of dendritic spines—root or result of behavior? Genes Brain Behav 16(1):101–117

    CAS  PubMed  Google Scholar 

  • Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12(7):2685–2705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hensley K, Kursula P (2016) Collapsin response mediator protein-2 (CRMP2) is a plausible etiological factor and potential therapeutic target in Alzheimer’s disease: comparison and contrast with microtubule-associated protein tau. J Alzheimers Dis 53(1):1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herms J, Dorostkar MM (2016) Dendritic spine pathology in neurodegenerative diseases. Annu Rev Pathol 11:221–250

    CAS  PubMed  Google Scholar 

  • Jacobi E, von Engelhardt J (2017) Diversity in AMPA receptor complexes in the brain. Curr Opin Neurobiol 45:32–38

    CAS  PubMed  Google Scholar 

  • Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, Duan S, Lu B (2010) Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 13(3):302–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna R, Wilson SM, Brittain JM, Weimer J, Sultana R, Butterfield A, Hensley K (2012) Opening Pandora’s jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders. Future Neurol 7(6):749–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM (2016) AMPA receptors as therapeutic targets for neurological disorders. Adv Protein Chem Struct Biol 103:203–261

    CAS  PubMed  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez J, Gamache K, Schneider R, Nader K (2015) Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. J Neurosci 35(6):2465–2475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Zuo Y (2017) Clustered structural and functional plasticity of dendritic spines. Brain Res Bull 129:18–22

    PubMed  Google Scholar 

  • Makihara H, Nakai S, Ohkubo W, Yamashita N, Nakamura F, Kiyonari H, Shioi G, Jitsuki-Takahashi A, Nakamura H, Tanaka F, Akase T, Kolattukudy P, Goshima Y (2016) CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes Cells 21(9):994–1005

    CAS  PubMed  Google Scholar 

  • Mimura F, Yamagishi S, Arimura N, Fujitani M, Kubo T, Kaibuchi K, Yamashita T (2006) Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism. J Biol Chem 281(23):15970–15979

    CAS  PubMed  Google Scholar 

  • Moutal A, Yang X, Li W, Gilbraith KB, Luo S, Cai S, François-Moutal L, Chew LA, Yeon SK, Bellampalli SS, Qu C, Xie JY, Ibrahim MM, Khanna M, Park KD, Porreca F, Khanna R (2017) CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-lacosamide. Pain 158(12):2301–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moutal A, Villa LS, Yeon SK, Householder KT, Park KD, Sirianni RW, Khanna R (2018) CRMP2 phosphorylation drives glioblastoma cell proliferation. Mol Neurobiol 55(5):4403–4416

    CAS  PubMed  Google Scholar 

  • Nishimura T, Fukata Y, Kato K, Yamaguchi T, Matsuura Y, Kamiguchi H, Kaibuchi K (2003) CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nat Cell Biol 5(9):819–826

    CAS  PubMed  Google Scholar 

  • Phoumthipphavong V et al (2016) Longitudinal effects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex. eNeuro:3(2)

  • Rudin M, Ben-Abraham R, Gazit V, Tendler Y, Tashlykov V, Katz Y (2005) Single-dose ketamine administration induces apoptosis in neonatal mouse brain. J Basic Clin Physiol Pharmacol 16(4):231–243

    CAS  PubMed  Google Scholar 

  • Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5(9):709–720

    CAS  PubMed  Google Scholar 

  • Segal M (2017) Dendritic spines: morphological building blocks of memory. Neurobiol Learn Mem 138:3–9

    PubMed  Google Scholar 

  • Smirnov MS, Evans PR, Garrett TR, Yan L, Yasuda R (2017) Automated remote focusing, drift correction, and Photostimulation to evaluate structural plasticity in dendritic spines. PLoS One 12(1):e0170586

    PubMed  PubMed Central  Google Scholar 

  • Soriano SG, Liu Q, Li J, Liu JR, Han XH, Kanter JL, Bajic D, Ibla JC (2010) Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology 112(5):1155–1163

    CAS  PubMed  Google Scholar 

  • Tang S, Yasuda R (2017) Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron 93(6):1315–1324.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viggiano D, Speranza L, Crispino M, Bellenchi GC, di Porzio U, Iemolo A, de Leonibus E, Volpicelli F, Perrone-Capano C (2018) Information content of dendritic spines after motor learning. Behav Brain Res 336:256–260

    PubMed  Google Scholar 

  • Wang Q, Shen FY, Zou R, Zheng JJ, Yu X, Wang YW (2017) Ketamine-induced apoptosis in the mouse cerebral cortex follows similar characteristic of physiological apoptosis and can be regulated by neuronal activity. Mol Brain 10(1):24

    PubMed  PubMed Central  Google Scholar 

  • Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1):137–149

    CAS  PubMed  Google Scholar 

  • Yu J et al (2018) Phosphorylated CRMP2 regulates spinal nociceptive neurotransmission. Mol Neurobiol

  • Zancan M, Dall'Oglio A, Quagliotto E, Rasia-Filho AA (2017) Castration alters the number and structure of dendritic spines in the male posterodorsal medial amygdala. Eur J Neurosci 45(4):572–580

    PubMed  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarate CA Jr et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864

    CAS  Google Scholar 

  • Zhang J et al (2017) Endophilin2 interacts with GluA1 to mediate AMPA receptor endocytosis induced by oligomeric amyloid-beta. Neural Plast 2017:8197085

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhao B, Zhu X, Li J, Wu F, Li S, Gong X, Cha C, Guo G (2018) Phosphorylation and SUMOylation of CRMP2 regulate the formation and maturation of dendritic spines. Brain Res Bull 139:21–30

    CAS  PubMed  Google Scholar 

  • Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 29(7):419–423

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81571191 and 81771144), Natural Science Foundation of Guangdong Province, China (2017B030311002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yalan Li or Guoqing Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, J., Li, J. et al. Ketamine Regulates Phosphorylation of CRMP2 To Mediate Dendritic Spine Plasticity. J Mol Neurosci 70, 353–364 (2020). https://doi.org/10.1007/s12031-019-01419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01419-4

Keywords

Navigation