Journal of Molecular Neuroscience

, Volume 69, Issue 2, pp 316–323 | Cite as

Methylation of the CDKN2A Gene Increases the Risk of Brain Arteriovenous Malformations

  • Xiaosheng Chen
  • Yuchun Liu
  • Shengjun Zhou
  • Sheng Nie
  • Zhiqin Lin
  • Chenhui Zhou
  • Jie SunEmail author
  • Xiang GaoEmail author
  • Yi HuangEmail author


Brain arteriovenous malformations (BAVMs) and intracranial aneurysms (IAs) are the results of a combination of genetic and environmental factors. Epigenetic factors also play an important role in the pathogenesis of these disorders. The aim of this study was to determine the effect of DNA methylation at the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene on the risk of BAVMs and IAs. A total of 70 intracranial vascular malformation patients (22 patients with BAVMs and 48 patients with IAs) and 26 patients with cerebral trauma (used as controls) were included in this study. DNA methylation levels of eight cytosine-phosphate-guanine (CpG) dinucleotides present in the CDKN2A gene were measured using bisulfite pyrosequencing technology. Significant differences in methylation at CpG1 (p = 0.005), CpG5 (p = 0.011), and CpG8 (p = 0.017) were observed between BAVM patients and controls. CDKN2A methylation levels in BAVM patients were much higher than those in IA patients (CpG5: p = 0.004; CpG8: p = 0.010). Significant differences were observed between female IA patients and female BAVM patients (CpG5: p = 0.006; CpG8: p = 0.005; mean: p = 0.015). Receiver operating characteristic (ROC) curve analysis showed that the CDKN2A gene methylation trended toward a diagnostic indicator in BAVM patients (area under curve = 0.711, p = 0.013). In conclusion, our study demonstrated that the CDKN2A gene methylation levels are significantly correlated with the occurrence of BAVMs, and thus, have potential for use in the early diagnosis of BAVMs. Future research on the pathogenesis of BAVMs should focus on the role of genetic factors in aberrant venous development. The association of the CDKN2A gene with venous development also deserves further study.


Brain arteriovenous malformations Intracranial aneurysms DNA methylation Cyclin-dependent kinase inhibitor 2A Epigenetics 



Intracranial aneurysms


Brain arteriovenous malformations


Cyclin-dependent kinase inhibitor 2A


Cytosine-phosphate guanine sequences


Genome-wide association studies.


Authors’ Contributions

JS, XG, and YH designed the study and edited the manuscript. XC, YL, ZL, SN, CZ, and SZ were responsible for data acquisition and experiments. XC and YL conducted data analysis and drafted the manuscript.

Funding information

This study was supported by the grants from the Zhejiang Provincial Natural Science Foundation of China (LQ17H090002, LQ18H090002), the Medicine and health science and technology projects of Zhejiang province (2018KY665, 2017KY610), the Ningbo Natural Science Foundation (2017A610223), and the Ningbo Health Branding Subject Fund (PPXK2018-04).

Compliance with Ethical Standards

All experiments were approved by the Ethics Committee of Ningbo First Hospital and written informed consent was given by all participants.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Bendjilali N, Nelson J, Weinsheimer S, Sidney S, Zaroff JG, Hetts SW, Segal M, Pawlikowska L, McCulloch CE, Young WL, Kim H (2014) Common variants on 9p21.3 are associated with brain arteriovenous malformations with accompanying arterial aneurysms. J Neurol Neurosurg Psychiatry 85:1280–1283CrossRefGoogle Scholar
  2. Bilguvar K, Yasuno K, Niemela M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM et al (2008) Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 40:1472–1477CrossRefGoogle Scholar
  3. Chen H, Gu Y, Wu W, Chen D, Li P, Fan W, Lu D, Zhao F, Qiao N, Qiu H, Fu C, Mao Y, Zhao Y (2011) Polymorphisms of the vascular endothelial growth factor A gene and susceptibility to sporadic brain arteriovenous malformation in a Chinese population. J Clin Neurosci 18:549–553CrossRefGoogle Scholar
  4. Chen J, Liu J, Zhang Y, Tian Z, Wang K, Zhang Y, Mu S, Lv M, Jiang P, Duan CZ, Zhang H, Qu Y, He M, Yang X (2018) China Intracranial Aneurysm Project (CIAP): protocol for a registry study on a multidimensional prediction model for rupture risk of unruptured intracranial aneurysms. J Transl Med 16:263CrossRefGoogle Scholar
  5. Deka R, Koller DL, Lai D, Indugula SR, Sun G, Woo D, Sauerbeck L, Moomaw CJ, Hornung R, Connolly ES, Anderson C, Rouleau G, Meissner I, Bailey-Wilson JE, Huston J III, Brown RD, Kleindorfer DO, Flaherty ML, Langefeld CD, Foroud T, Broderick JP, the FIA Study Investigators (2010) The relationship between smoking and replicated sequence variants on chromosomes 8 and 9 with familial intracranial aneurysm. Stroke 41:1132–1137CrossRefGoogle Scholar
  6. Espert R, Gadea M, Alino M, Oltra-Cucarella J, Perpina C (2018) Moyamoya disease: clinical, neuroradiological, neuropsychological and genetic perspective. Rev Neurol 66:S57–S64Google Scholar
  7. Foroud T, Koller DL, Lai D, Sauerbeck L, Anderson C, Ko N, Deka R, Mosley TH, Fornage M, Woo D, Moomaw CJ, Hornung R, Huston J, Meissner I, BaileyWilson JE, Langefeld C, Rouleau G, Connolly ES, Worrall BB, Kleindorfer D, Flaherty ML, Martini S, Mackey J, de Los Rios la Rosa F, Brown RD Jr, Broderick JP, the FIA Study Investigators (2012) Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke 43:2846–2852CrossRefGoogle Scholar
  8. Fujimoto M, Uno J, Ikai Y, Inoha S, Kai Y, Maeda K et al (2011) Risk of rebleeding in arteriovenous malformations due to impaired venous drainage after radiosurgery. Neurol Med Chir (Tokyo) 51:585–587CrossRefGoogle Scholar
  9. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM et al (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160CrossRefGoogle Scholar
  10. Go GO, Park H, Lee CH, Hwang SH, Han JW, Park IS (2013) The outcomes of spontaneous intracerebral hemorrhage in young adults - a clinical study. J Cerebrovasc Endovasc Neurosurg 15:214–220CrossRefGoogle Scholar
  11. Hop JW, Rinkel GJ, Algra A, van Gijn J (1997) Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke 28:660–664CrossRefGoogle Scholar
  12. Ikawa F, Kato Y, Kobayashi S Gender difference in cerebrovascular disease(2015) Nihon Rinsho 73:617–624Google Scholar
  13. Kang J, Lee I (2006) TuJ1 (class III beta-tubulin) as phenotypic marker of lymphatic and venous valves. Cardiovasc Pathol 15:218–221CrossRefGoogle Scholar
  14. Kim H, Sidney S, McCulloch CE, Poon KY, Singh V, Johnston SC, Ko NU, Achrol AS, Lawton MT, Higashida RT, Young WL, UCSF BAVM Study Project (2007) Racial/ethnic differences in longitudinal risk of intracranial hemorrhage in brain arteriovenous malformation patients. Stroke 38:2430–2437CrossRefGoogle Scholar
  15. Kim H, Hysi PG, Pawlikowska L, Poon A, Burchard EG, Zaroff JG, Sidney S, Ko NU, Achrol AS, Lawton MT, McCulloch CE, Kwok PY, Young WL (2009) Common variants in interleukin-1-Beta gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc Dis 27:176–182CrossRefGoogle Scholar
  16. Kremer PH, Koeleman BP, Pawlikowska L, Weinsheimer S, Bendjilali N, Sidney S et al (2015) Evaluation of genetic risk loci for intracranial aneurysms in sporadic arteriovenous malformations of the brain. J Neurol Neurosurg Psychiatry 86:524–529CrossRefGoogle Scholar
  17. Liu J, Morgan M, Hutchison K, Calhoun VD (2010) A study of the influence of sex on genome wide methylation. PLoS One 5:e10028CrossRefGoogle Scholar
  18. Mackey J, Brown RD Jr, Moomaw CJ, Sauerbeck L, Hornung R, Gandhi D et al (2012) Unruptured intracranial aneurysms in the Familial Intracranial Aneurysm and International Study of Unruptured Intracranial Aneurysms cohorts: differences in multiplicity and location. J Neurosurg 117:60–64CrossRefGoogle Scholar
  19. Mohan D, Munteanu V, Coman T, Ciurea AV (2015) Genetic factors involves in intracranial aneurysms--actualities. J Med Life 8:336–341Google Scholar
  20. Nakagawa O, Nakagawa M, Richardson JA, Olson EN, Srivastava D (1999) HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic, and pharyngeal arch segments. Dev Biol 216:72–84CrossRefGoogle Scholar
  21. Nakaoka H, Tajima A, Yoneyama T, Hosomichi K, Kasuya H, Mizutani T, Inoue I (2014) Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm. Stroke 45:2239–2245CrossRefGoogle Scholar
  22. Neyazi B, Herz A, Stein KP, Gawish I, Hartmann C, Wilkens L, Erguen S, Dumitru CA, Sandalcioglu IE (2017) Brain arteriovenous malformations: implications of CEACAM1-positive inflammatory cells and sex on hemorrhage. Neurosurg Rev 40:129–134CrossRefGoogle Scholar
  23. Paquette M, Chong M, Saavedra YGL, Pare G, Dufour R, Baass A (2017) The 9p21.3 locus and cardiovascular risk in familial hypercholesterolemia. J Clin Lipidol 11:406–412CrossRefGoogle Scholar
  24. Pastore D, Pacifici F, Capuani B, Palmirotta R, Dong C, Coppola A, Abete P, Roselli M, Sbraccia P, Guadagni F, Lauro D, Rundek T, Della-Morte D (2017) Sex-genetic interaction in the risk for cerebrovascular disease. Curr Med Chem 24:2687–2699CrossRefGoogle Scholar
  25. Quillien A, Moore JC, Shin M, Siekmann AF, Smith T, Pan L, Moens CB, Parsons MJ, Lawson ND (2014) Distinct Notch signaling outputs pattern the developing arterial system. Development 141:1544–1552CrossRefGoogle Scholar
  26. Seki T, Yun J, Oh SP (2003) Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res 93:682–689CrossRefGoogle Scholar
  27. Shirodkar AV, Marsden PA (2011) Epigenetics in cardiovascular disease. Curr Opin Cardiol 26:209–215CrossRefGoogle Scholar
  28. Simon M, Franke D, Ludwig M, Aliashkevich AF, Koster G, Oldenburg J et al (2006) Association of a polymorphism of the ACVRL1 gene with sporadic arteriovenous malformations of the central nervous system. J Neurosurg 104:945–949CrossRefGoogle Scholar
  29. Stenvinkel P, Luttropp K, McGuinness D, Witasp A, Qureshi AR, Wernerson A, Nordfors L, Schalling M, Ripsweden J, Wennberg L, Söderberg M, Bárány P, Olauson H, Shiels PG (2017) CDKN2A/p16INK4(a) expression is associated with vascular progeria in chronic kidney disease. Aging (Albany NY) 9:494–507CrossRefGoogle Scholar
  30. Sturiale CL, Puca A, Sebastiani P, Gatto I, Albanese A, Di Rocco C et al (2013) Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: where do we stand? Brain 136:665–681CrossRefGoogle Scholar
  31. Sturiale CL, Fontanella MM, Gatto I, Puca A, Giarretta I, D’Arrigo S et al (2014) Association between polymorphisms rs1333040 and rs7865618 of chromosome 9p21 and sporadic brain arteriovenous malformations. Cerebrovasc Dis 37:290–295CrossRefGoogle Scholar
  32. Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC (2016) Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 8:78CrossRefGoogle Scholar
  33. Tong X, Wu J, Lin F, Cao Y, Zhao Y, Ning B, Zhao B, Wang L, Zhang S, Wang S, Zhao J (2016) The effect of age, sex, and lesion location on initial presentation in patients with brain arteriovenous malformations. World Neurosurg 87:598–606CrossRefGoogle Scholar
  34. Turan N, Heider RA, Zaharieva D, Ahmad FU, Barrow DL, Pradilla G (2016) Sex differences in the formation of intracranial aneurysms and incidence and outcome of subarachnoid hemorrhage: review of experimental and human studies. Transl Stroke Res 7:12–19CrossRefGoogle Scholar
  35. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753CrossRefGoogle Scholar
  36. Wang F, Xu B, Sun Z, Wu C, Zhang X (2013) Wall shear stress in intracranial aneurysms and adjacent arteries. Neural Regen Res 8:1007–1015Google Scholar
  37. Wang Z, Zhao J, Sun J, Nie S, Li K, Gao F, Zhang T, Duan S, di Y, Huang Y, Gao X (2016) Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation. Neurosci Lett 621:47–53CrossRefGoogle Scholar
  38. Winkler EA, Birk H, Burkhardt JK, Chen X, Yue JK, Guo D et al (2018) Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J Neurosurg:1–11Google Scholar
  39. Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B, Auburger G, Simon M, Krex D, Arlier Z, Nayak N, Ruigrok YM, Niemelä M, Tajima A, von und zu Fraunberg M, Dóczi T, Wirjatijasa F, Hata A, Blasco J, Oszvald A, Kasuya H, Zilani G, Schoch B, Singh P, Stüer C, Risselada R, Beck J, Sola T, Ricciardi F, Aromaa A, Illig T, Schreiber S, van Duijn CM, van den Berg LH, Perret C, Proust C, Roder C, Ozturk AK, Gaál E, Berg D, Geisen C, Friedrich CM, Summers P, Frangi AF, State MW, Wichmann HE, Breteler MMB, Wijmenga C, Mane S, Peltonen L, Elio V, Sturkenboom MCJM, Lawford P, Byrne J, Macho J, Sandalcioglu EI, Meyer B, Raabe A, Steinmetz H, Rüfenacht D, Jääskeläinen JE, Hernesniemi J, Rinkel GJE, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, Günel M (2010) Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 42:420–425CrossRefGoogle Scholar
  40. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104CrossRefGoogle Scholar
  41. Yu L, Wang J, Wang S, Zhang D, Zhao Y, Wang R, Zhao J (2017) DNA methylation regulates gene expression in intracranial aneurysms. World Neurosurg 105:28–36CrossRefGoogle Scholar
  42. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806Google Scholar
  43. Zhong J, Chen X, Ye H, Wu N, Chen X, Duan S (2017) CDKN2A and CDKN2B methylation in coronary heart disease cases and controls. Exp Ther Med 14:6093–6098Google Scholar
  44. Zhou S, Zhang Y, Wang L, Zhang Z, Cai B, Liu K, Zhang H, Dai M, Sun L, Xu X, Cai H, Liu X, Lu G, Xu G (2016) CDKN2B methylation is associated with carotid artery calcification in ischemic stroke patients. J Transl Med 14:333CrossRefGoogle Scholar
  45. Zhou S, Gao X, Sun J, Lin Z, Huang Y (2017) DNA methylation of the PDGFD gene promoter increases the risk for intracranial aneurysms and brain arteriovenous malformations. DNA Cell Biol 36:436–442CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery, Ningbo First HospitalNingbo University School of MedicineNingboChina
  2. 2.Department of Neurosurgery, Ningbo HospitalZhejiang University School of MedicineNingboChina

Personalised recommendations