Skip to main content

Advertisement

Log in

N-Acetyl Serotonin Protects Neural Progenitor Cells Against Oxidative Stress-Induced Apoptosis and Improves Neurogenesis in Adult Mouse Hippocampus Following Traumatic Brain Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In this study, with primary mouse neural progenitor cells (NPCs), we investigated the neuroprotective effect of a tropomyosin-related kinase receptor B (TrkB) agonist, N-acetyl serotonin (NAS), against hydrogen peroxide (H2O2)-induced toxicity. We found that pre-incubation with NAS not only ameliorates H2O2-induced cell viability loss, lactate dehydrogenase (LDH) release, and proliferative and migratory capacity impairments, but counteracts H2O2-triggered production of nitric oxide (NO), reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-deoxyguanosine (8-OHdG) in a dose-dependent manner. Additionally, pre-treatment with NAS was able to attenuate H2O2-induced apoptosis in NPCs, evidenced by the decreased percentage of apoptotic cells and altered expression of apoptosis-related factors. Furthermore, in differentiated NPCs, NAS improves H2O2-induced reduction in neurite growth. Mechanistic studies revealed that the protective effects of NAS in NPCs may be mediated by the TrkB/PI3K/Akt/ cAMP response element binding protein (CREB) signaling cascades. In a mouse traumatic brain injury (TBI) model, we found that systemic administration of 30 mg/kg NAS could improve hippocampal neurogenesis, manifested by the increased number of SOX-2-positive cells and increased expression of phosphorylated CREB in the dentate gyrus (DG) area. Treatment with NAS also ameliorates cognitive impairments caused by TBI, as assessed by Y-maze and contextual and cued fear conditioning tests. Taken together, these results provide valuable insights into the neuroprotective and neuroregenerative effects of NAS, suggesting it may have therapeutic potential for the treatment of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgments

All authors thank Dr. Jin Li for his kind assistance in data collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiannong Zhao.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest related to this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, P., Huang, C. et al. N-Acetyl Serotonin Protects Neural Progenitor Cells Against Oxidative Stress-Induced Apoptosis and Improves Neurogenesis in Adult Mouse Hippocampus Following Traumatic Brain Injury. J Mol Neurosci 67, 574–588 (2019). https://doi.org/10.1007/s12031-019-01263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01263-6

Keywords

Navigation