Advertisement

Journal of Molecular Neuroscience

, Volume 66, Issue 4, pp 482–491 | Cite as

Altered S100 Calcium-Binding Protein B and Matrix Metallopeptidase 9 as Biomarkers of Mesial Temporal Lobe Epilepsy with Hippocampus Sclerosis

  • Nagwa A. Meguid
  • Hatem Samir
  • Geir BjørklundEmail author
  • Mona Anwar
  • Adel Hashish
  • Farouk Koura
  • Salvatore Chirumbolo
  • Saher Hashem
  • Mona A. El-Bana
  • Hebatalla S. Hashem
Article
  • 103 Downloads

Abstract

Mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) is the most common form of partial epilepsy. The aim of the present study is to highlight possible and suitable biomarkers that can help in the diagnosis and prognosis of this intractable form of epilepsy. The study was carried out on 30 epileptic patients of both sexes with complex partial seizures, having an age ranging from 4 to 30 years and were selected from the outpatient epilepsy clinic at the Kasr El-Aini Hospital in Cairo, Egypt. Thirty healthy children and young adults, age- and sex-matched to the patients, were included in the study as controls. Patients with epilepsy and healthy controls were subjected to a set of laboratory analyses including S100 calcium-binding protein B (S100B), matrix metallopeptidase 9 (MMP9), C-reactive protein (CRP), and prolactin (PRL), in addition to neurophysiological, radiological, and psychometric assessments, on the basis of the recent evidence of the field. The results of this study showed a marked increase in the investigated biomarkers in patients with epilepsy compared to controls. The performance of the epileptic patients in psychometric assessments was below the average threshold, with the MRI analysis showing specific findings of mesial temporal sclerosis (MTS) and EEG showing anterior temporal spikes. A significant negative correlation was found between MMP9 and psychometric test. On the other hand, a significant positive correlation was observed between seizure severity and the indicated biomarker. The present study suggests that S100B and MMP9 could be used as biomarkers for neuronal injury and helps in the prognosis of MTLE.

Keywords

Mesial temporal lobe epilepsy Hippocampal sclerosis S100 calcium-binding protein B Matrix metallopeptidase 9 Prolactin 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. Akanuma N, Alarco’n G, Lum F, Kissani N, Koutroumanidis M, Adachi N, Binnie CD, Polkey CE, Morris RG (2003) Lateralising value of neuropsychological protocols for presurgical assessment of temporal lobe epilepsy. Epilepsia 44:408–418CrossRefGoogle Scholar
  2. Alapirtti T, Waris M, Fallah M, Soilu-Hänninen M, Mäkinen R, Kharazmi E, Peltola J (2012) C-reactive protein and seizures in focal epilepsy: a video-electroencephalographic study. Epilepsia 53:790–796CrossRefGoogle Scholar
  3. Albeanu AG, Magureanu S, Lagae L (2012) The typical features of mesial temporal lobe epilepsy with hippocampal sclerosis in children. Rom J Neurol 11:127–134Google Scholar
  4. Allin KH, Nordestgaard BG, Flyger H, Bojesen SE (2011) Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer: a cohort study. Breast Cancer Res 13:R55.  https://doi.org/10.1186/bcr2891 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amruth G, Praveen-kumar S, Nataraju B, Kasturi P (2014) Study of psychiatric comorbidities in epilepsy by using the Mini International Neuropsychiatric Interview. Epilepsy Behav 33:94–100CrossRefGoogle Scholar
  6. Aravindkumar R, Shivashankar N, Satishchandra P, Sinha S, Saini J, Subbakrishna DK (2012) Temporal resolution deficits in patients with refractory complex partial seizures and mesial temporal sclerosis (MTS). Epilepsy Behav 24:126–130CrossRefGoogle Scholar
  7. Asadi-Pooya AA, Rostami C, Rabiei AH, Sperling MR (2015) Factors associated with tonic–clonic seizures in patients with drug-resistant mesial temporal epilepsy. J Neurol Sci 359:452–454CrossRefGoogle Scholar
  8. Bianchi R, Giambanco I, Donato R (2010) S100B/RAGE-dependent activation of microglia via NF-kappa B and AP-1 co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 31:665–677CrossRefGoogle Scholar
  9. Bone B, Fogarasi A, Schulz R, Gyimesi C, Kalmar Z, Kovacs N, Janszky J (2012) Secondarily generalized seizures in temporal lobe epilepsy. Epilepsia 53:817–824CrossRefGoogle Scholar
  10. Cersósimo R, Flesler S, Bartuluchi M, Soprano AM, Pomata H, Caraballo R (2011) Mesial temporal lobe epilepsy with hippocampal sclerosis: study of 42 children. Seizure 20:131–137CrossRefGoogle Scholar
  11. Cramer JA (2001) Exploration of changes in health-related quality of life after 3 months of vagus nerve stimulation. Epilepsy Behav 2(5):460–465CrossRefGoogle Scholar
  12. Diehl LA, Silveira PP, Leite MC, Crema LM, Portella AK, Billodre MN, Dalmaz C (2007) Long lasting sex-specific effects upon behavior and S100B levels after maternal separation and exposure to a model of post-traumatic stress disorder in rats. Brain Res 1144:107–116CrossRefGoogle Scholar
  13. Duncan JS, Sander JW (1991) The Chalfont seizure severity scale. J Neurol Neurosurg Psychiatry 54:873–876CrossRefGoogle Scholar
  14. El Missiry A (2003) Homicide and psychiatric illness: an Egyptian study. Dissertation, Ain Shams University, CairoGoogle Scholar
  15. First MB, Spitzer RL, Williams JB (1995) Structured clinical interview for DSM-IV (SCID-I): user’s guide and interview, research version. Biometrics, Research Department, New York State Psychiatric Institute, New YorkGoogle Scholar
  16. Fogarasi A, Arzimanoglou A (2011) The clinical syndrome of mesial temporal lobe epilepsy in children. In: Rosenow F, Ryvlin P, Lüders HO (eds) The mesial temporal lobe epilepsies. John Libbey Eurotext, Montrouge, pp 93–105Google Scholar
  17. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the psychometric tests state of cases for the clinician. J Psychiatr Res 12:189–198CrossRefGoogle Scholar
  18. Fontana E, Negrini F, Francione S, Mai R, Osanni E, Menna E, Bernardina BD (2006) Temporal lobe epilepsy in children: electroclinical study of 77 cases. Epilepsia 47(Suppl 5):26–30CrossRefGoogle Scholar
  19. Galanopoulou AS, Moshé SL (2011) In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med 5:615–628CrossRefGoogle Scholar
  20. Getz K, Hermann B, Seidenberg M, Bell B, Dow C, Jones J, Woodard A (2003) Negative symptoms and psychosocial status in temporal lobe epilepsy. Epilepsy Res 53:240–244CrossRefGoogle Scholar
  21. Ghanem MH, Ibrahim M, El-Behairy AA, El Merghany H (2000) Mini international neuropsychiatric interview for children/adolescents (M.I.N.I. Kid), Arabic version, 1st edn. Institute of Psychiatry, Ain Shams University, CairoGoogle Scholar
  22. Gomez-Ibañez A, Gasca-Salas C, Urrestarazu E, Viteri C (2013) Clinical phenotypes within non-surgical patients with mesial temporal lobe epilepsy caused by hippocampal sclerosis based on response to antiepileptic drugs. Seizure 22:20–23CrossRefGoogle Scholar
  23. Heuser K, Cvancarova M, Gjerstad L, Tauboll E (2011) Is temporal lobe epilepsy with childhood febrile seizures a distinctive entity? A comparative study. Seizure 20:163–166CrossRefGoogle Scholar
  24. Javidan M (2012) Electroencephalography in mesial temporal lobe epilepsy: a review. Epilepsy Res Treat 2012:637430.  https://doi.org/10.1155/2012/637430 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kar BR, Rao SL, Chandramouli BA, Thennarasu K, Satishchandra P (2010) Neuropsychological lateralization of brain dysfunction in children with mesial temporal sclerosis: a presurgical evaluation. J Child Neurol 25:705–714CrossRefGoogle Scholar
  26. Kim WJ, Park SC, Lee SJ, Lee JH, Kim JY, Lee BI, Kim DI (1999) The prognosis for control of seizures with medications in cases with MRI evidence for mesial temporal sclerosis. Epilepsia 40:290–293CrossRefGoogle Scholar
  27. Konopka A, Grajkowska W, Ziemiańska K, Roszkowski M, Daszkiewicz P, Rysz A, Marchel A, Koperski L, Wilczyński GM, Dzwonek J (2013) Matrix metalloproteinase-9 (MMP-9) in human intractable epilepsy caused by focal cortical dysplasia. Epilepsy Res 104:45–58CrossRefGoogle Scholar
  28. Kumlien E, Doss RC, Gates JR (2002) Treatment outcome in cases with mesial temporal sclerosis. Seizure 11:413–417CrossRefGoogle Scholar
  29. Lu C, Li J, Sun W, Feng L, Li L, Liu A, Wang Y (2010) Elevated plasma S100B concentration is associated with mesial temporal lobe epilepsy in Han Chinese: a case-control study. Neurosci Lett 484:139–142CrossRefGoogle Scholar
  30. Luef G (2010) Hormonal alterations following seizures. Epilepsy Behav 19:131–133CrossRefGoogle Scholar
  31. Macizo P, Soriano MF, Paredes N (2016) Phonological and visuospatial working memory in autism spectrum disorders. J Autism Dev Disord 46(9):2956–2967CrossRefGoogle Scholar
  32. Mikkonen K, Pekkala N, Pokka T, Romner B, Uhari M, Rantala H (2012) S100B proteins in febrile seizures. Seizure 21:144–146CrossRefGoogle Scholar
  33. Miró J, Gurtubay-Antolin A, Ripollés P, Sierpowska J, Juncadella M, Fuentemilla L, Sánchez V, Falip M, Rodríguez-Fornells A (2015) Interhemispheric microstructural connectivity in bitemporal lobe epilepsy with hippocampal sclerosis. Cortex 67:106–121CrossRefGoogle Scholar
  34. Okulski P, Jay TM, Jaworski J, Duniec K, Dzwonek J, Konopacki FA, Kaczmarek L (2007) TIMP-1 abolishes MMP-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol Psychiatry 62:359–362CrossRefGoogle Scholar
  35. Ouvrier RA, Goldsmith RF, Ouvrier S, Williams IC (2016) The Value of the Mini-Mental State Examination in Childhood: A Preliminary Study. J Child Neurol 8(2):145–148CrossRefGoogle Scholar
  36. Pittau F, Bisulli F, Mai R, Fares JE, Vignatelli L, Labate A, Tinuper P (2009) Prognostic factors in cases with mesial temporal lobe epilepsy. Epilepsia 50:41–44CrossRefGoogle Scholar
  37. Romi F, Helgeland G, Gilhus NE (2012) Serum levels of matrix metalloproteinases: implications in clinical neurology. Eur Neurol 67:121–128CrossRefGoogle Scholar
  38. Rudie JD, Colby JB, Salamon N (2015) Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Res 117:63–69CrossRefGoogle Scholar
  39. Schilbach L, Koubeissi MZ, David N, Vogeley K, Ritzl EK (2007) Being with virtual others: studying social cognition in temporal lobe epilepsy. Epilepsy Behav 11:316–323CrossRefGoogle Scholar
  40. Selwa LM, Schmidt SL, Malow BA, Beydoun A (2003) Long-term outcome of nonsurgical candidates with medically refractory localization-related epilepsy. Epilepsia 44:1568–1572CrossRefGoogle Scholar
  41. Sendrowski K, Sobaniec W (2013) Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 65:555–565CrossRefGoogle Scholar
  42. Sendrowski K, Sobaniec W, Sobaniec-Lotowska ME, Lewczuk P (2004) S-100 protein as marker of the blood-brain barrier disruption in children with internal hydrocephalus and epilepsy--a preliminary study.  Rocz Akad Med Bialymst 49:236–238PubMedGoogle Scholar
  43. Shapiro LA, Bialowas-McGoey LA, Whitaker-Azmitia PM (2010) Effects of S100B on serotonergic plasticity and neuroinflammation in the hippocampus in down syndrome and Alzheimer’s disease: studies in an S100B overexpressing mouse model. Cardiovasc Psychiatry Neurol 2010:153657.  https://doi.org/10.1155/2010/153657 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sheehan DV, Janavs J (1998) Mini international neuropsychiatric interview for children/adolescents (M.I.N.I. Kid). University of South Florida College of Medicine, TampaGoogle Scholar
  45. Silvia O, Patricia S, Damián C, Brenda G, Walter S, Luciana D, Estela C, Patricia S, Silvia K (2003) Mesial temporal lobe epilepsy and hippocampal sclerosis: cognitive function assessment in Hispanic patients. Epilepsy Behav 4:717–722CrossRefGoogle Scholar
  46. Siniscalchi A, Gallelli L, Mercuri NB, De Sarro G (2008) Serum prolactin levels in repetitive temporal epileptic seizures. Eur Rev Med Pharmacol Sci 12:365–368PubMedGoogle Scholar
  47. Suenaga N, Ichiyama T, Kubota M, Isumi H, Tohyama J, Furukawa S (2008) Roles of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases 1 in acute encephalopathy following prolonged febrile seizures. J Neurol Sci 15:126–130CrossRefGoogle Scholar
  48. Sutula TP (2004) Mechanisms of epilepsy progression: current theories and perspectives from neuroplasticity in adulthood and development. Epilepsy Res 60:161–171CrossRefGoogle Scholar
  49. Wechsler D (1996) Wechsler Intelligence Scale for Children-Third Edition. WISC-III. Psychological Corporation, San Antonio Google Scholar
  50. Wechsler D (1997) WAIS-III: Wechsler adult intelligence scale. Psychological Corporation, San AntonioGoogle Scholar
  51. Wechsler D (2004) The Wechsler intelligence scale for children, 4th edn. Pearson, LondonGoogle Scholar
  52. Westaby S, Saatvedt K, White S, Katsumata T, van Oeveren W, Bhatnagar NK, Brown S, Halligan PW (2000) Is there a relationship between serum S-100beta protein and neuropsychologic dysfunction after cardiopulmonary bypass? J Thorac Cardiovasc Surg 119:132–137CrossRefGoogle Scholar
  53. Wilczynski GM, Konopacki FA, Wilczek E, Lasiecka Z, Gorlewicz A, Michaluk P, Wawrzyniak M, Malinowska M, Okulski P, Kolodziej LR, Konopka W, Duniec K, Mioduszewska B, Nikolaev E, Walczak A, Owczarek D, Gorecki DC, Zuschratter W, Ottersen OP, Kaczmarek L (2008) Important role of matrix metalloproteinase 9 in epileptogenesis. J Cell Biol 180:1021–1135CrossRefGoogle Scholar
  54. Winocur G, Roder J, Lobaugh N (2001) Learning and memory in S100-beta transgenic mice: an analysis of impaired and preserved function. Neurobiol Learn Mem 75:230–243CrossRefGoogle Scholar
  55. Yin P, Yang L, Zhou HY, Sun RP (2011) Matrix metalloproteinase-9 may be a potential therapeutic target in epilepsy. Med Hypotheses 76:184–186CrossRefGoogle Scholar
  56. Zinke K, Fries E, Altgassen M, Kirschbaum C, Dettenborn L, Kliegel M (2010) Visuospatial short-term memory explains deficits in tower task planning in high-functioning children with autism spectrum disorder. Child Neuropsychol 16(3):229–241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nagwa A. Meguid
    • 1
  • Hatem Samir
    • 2
  • Geir Bjørklund
    • 3
    Email author
  • Mona Anwar
    • 1
  • Adel Hashish
    • 1
  • Farouk Koura
    • 2
  • Salvatore Chirumbolo
    • 4
  • Saher Hashem
    • 2
  • Mona A. El-Bana
    • 5
  • Hebatalla S. Hashem
    • 1
  1. 1.Research on Children with Special Needs DepartmentNational Research CentreGizaEgypt
  2. 2.Neurology DepartmentCairo UniversityCairoEgypt
  3. 3.Council for Nutritional and Environmental MedicineMo i RanaNorway
  4. 4.Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
  5. 5.Medical Biochemistry DepartmentNational Research CentreGizaEgypt

Personalised recommendations