Abstract
Primary cilia are small, special cellular organelles that provide important sensory and signaling functions during the development of mammalian organs and coordination of postnatal cellular processes. Dysfunction of primary cilia are thought to be the main cause of ciliopathies, a group of genetic disorders characterized by overlapping developmental defects and prominent neurodevelopmental features. Although, disrupted cilia-linked signaling pathways have been implicated in the regulation of numerous neuronal functions, the precise role of primary cilia in the brain are still unknown. Importantly, studies of recent years have highlighted that different functions of primary cilia are reflected by their diverse morphology and unique signaling components localized in the ciliary membrane. In the present study, we conducted a comparative analysis of the expression pattern, distribution and length of adenylyl cyclase 3, somatostatin receptor 3, and ADP-ribosylation factor-like protein 13B expressing primary cilia in the mouse brain. We show that cilia of neurons and astrocytes display a well characterized distribution and ciliary marker arrangements. Moreover, quantitative comparison of their length, density and occurrence rate revealed that primary cilia exhibit region-specific alternations. In summary, our study provides a comprehensive overview of the cellular organization and morphological traits of primary cilia in regions of the physiological adult mouse brain.





Similar content being viewed by others
Abbreviations
- 5HT6 :
-
Somatostatin receptor 6
- AC3:
-
Adenylyl cylase type 3
- ARC:
-
Arcuate nucleus
- Arl13b:
-
ADP-ribosylation factor –like protein 13 B
- AsPC:
-
Astrocytic primary cilia
- BBS:
-
Bardet-Biedl syndrome
- CNS:
-
Central nervous system
- D1r:
-
Dopamine receptor subtype 1
- DM:
-
Dorsomedial nucleus
- GFAP:
-
Glial fibrillary acidic protein
- GPCR:
-
G protein-coupled receptor
- Kiss1r:
-
Kisspeptin receptor 1
- Mch1r:
-
Melanin-concentrating hormone receptor subtype 1
- NeuN:
-
Neuronal specific nuclear protein
- NPC:
-
Neuronal primary cilia
- NPY2r:
-
Neuropeptide Y 2 receptor
- NPY5r:
-
Neuropeptide Y 5 receptor
- PVN:
-
Paraventricular nucleus
- SCN:
-
Suprachiasmatic nucleus
- Sstr3:
-
Somatostatin receptor subtype 3
- VM:
-
Ventromedial nucleus
References
Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7(1):125–148. https://doi.org/10.1146/annurev.genom.7.080505.115610
Barker AR, Thomas R, Dawe HR (2014) Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organ 10(1):96–107. https://doi.org/10.4161/org.27375
Berbari NF, Bishop GA, Askwith CC, Lewis JS, Mykytyn K (2007) Hippocampal neurons possess primary cilia in culture. J Neurosci Res 85(5):1095–1100. https://doi.org/10.1002/jnr.21209
Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K (2008a) Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 19(4):1540–1547. https://doi.org/10.1091/mbc.E07-09-0942
Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008b) Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci U S A 105(11):4242–4246. https://doi.org/10.1073/pnas.0711027105
Berbari NF, Pasek RC, Malarkey EB, Yazdi SMZ, McNair AD, Lewis WR, Nagy TR, Kesterson RA, Yoder BK (2013) Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci U S A 110(19):7796–7801. https://doi.org/10.1073/pnas.1210192110
Bishop GA, Berbari NF, Lewis J, Mykytyn K (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505(5):562–571. https://doi.org/10.1002/cne.21510
Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D (2000) Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 872(1-2):271–275. https://doi.org/10.1016/S0006-8993(00)02519-1
Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179(4068):77–79. https://doi.org/10.1126/science.179.4068.77
Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, Wang B, Flavell RA, Rakic P, Town T (2008) Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci U S A 105(35):13127–13132. https://doi.org/10.1073/pnas.0804558105
Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12(5):767–778. https://doi.org/10.1016/j.devcel.2007.03.004
Cevik S, Hori Y, Kaplan OI, Kida K, Toivenon T, Foley-Fisher C, Cottell D, Katada T, Kontani K, Blacque OE (2010) Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J Cell Biol 188(6):953–969. https://doi.org/10.1083/jcb.200908133
Challis RC, Tian H, Wang J, He J, Jiang J, Chen X, Yin W, Connelly T, Ma L, Yu CR, Pluznick JL, Storm DR, Huang L, Zhao K, Ma M (2015) An olfactory cilia pattern in the mammalian nose ensures high sensitivity to odors. Current biology : CB 25(19):2503–2512. https://doi.org/10.1016/j.cub.2015.07.065
Chen X, Luo J, Leng Y, Yang Y, Zweifel LS, Palmiter RD, Storm DR (2016) Ablation of type III adenylyl cyclase in mice causes reduced neuronal activity, altered sleep pattern, and depression-like phenotypes. Biol Psychiatry 80(11):836–848. https://doi.org/10.1016/j.biopsych.2015.12.012
D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7(5):347–358. https://doi.org/10.1038/nrm1910
Danilov AI, Gomes-Leal W, Ahlenius H, Kokaia Z, Carlemalm E, Lindvall O (2009) Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia 57(2):136–152. https://doi.org/10.1002/glia.20741
Davenport JR, Watts AJ, Roper VC, Croyle MJ, van Groen T, Wyss JM, Nagy TR, Kesterson RA, Yoder BK (2007) Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Current biology : CB 17(18):1586–1594. https://doi.org/10.1016/j.cub.2007.08.034
Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96(20):11619–11624. https://doi.org/10.1073/pnas.96.20.11619
Domire JS, Green JA, Lee KG, Johnson AD, Askwith CC, Mykytyn K (2011) Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell Mol life Sci: CMLS 68:2951–2960. https://doi.org/10.1007/s00018-010-0603-4
Dummer A, Poelma C, DeRuiter MC, Goumans MJ, Hierck BP (2016) Measuring the primary cilium length: improved method for unbiased high-throughput analysis. Cilia 5(1):7. https://doi.org/10.1186/s13630-016-0028-2
Einstein EB, Patterson CA, Hon BJ, Regan KA, Reddi J, Melnikoff DE, Mateer MJ, Schulz S, Johnson BN, Tallent MK (2010) Somatostatin signaling in neuronal cilia is critical for object recognition memory. The Journal of neuroscience : the official journal of the Society for Neuroscience 30(12):4306–4314. https://doi.org/10.1523/JNEUROSCI.5295-09.2010
Forsythe E, Beales PL (2013) Bardet-Biedl syndrome. Eur J Hum Genet: EJHG 21(1):8–13. https://doi.org/10.1038/ejhg.2012.115
Franklin KBJ, Paxinos G (2008) The Mouse brain in stereotaxic coordinates. Elsevier Academic Press, Amsterdam
Fry AM, Leaper MJ, Bayliss R (2014) The primary cilium: guardian of organ development and homeostasis. Organ 10(1):62–68. https://doi.org/10.4161/org.28910
Gerdes JM, Davis EE, Katsanis N (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell 137(1):32–45. https://doi.org/10.1016/j.cell.2009.03.023
Gillingham AK, Munro S (2007) The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23(1):579–611. https://doi.org/10.1146/annurev.cellbio.23.090506.123209
Green JA, Schmid CL, Bley E, Monsma PC, Brown A, Bohn LM, Mykytyn K (2016) Recruitment of beta-arrestin into neuronal cilia modulates somatostatin receptor subtype 3 ciliary localization. Mol Cell Biol 36:223–235. https://doi.org/10.1128/MCB.00765-15
Guadiana SM, Semple-Rowland S, Daroszewski D, Madorsky I, Breunig JJ, Mykytyn K, Sarkisian MR (2013) Arborization of dendrites by developing neocortical neurons is dependent on primary cilia and type 3 adenylyl cyclase. The Journal of neuroscience : the official journal of the Society for Neuroscience 33(6):2626–2638. https://doi.org/10.1523/JNEUROSCI.2906-12.2013
Hamon M et al (1999) Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors. Neuropsychopharmacology 21:68S–76S. https://doi.org/10.1016/S0893-133X(99)00044-5
Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A (2008) Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 11(3):277–284. https://doi.org/10.1038/nn2059
Han YM, Kang GM, Byun K, Ko HW, Kim J, Shin MS, Kim HK, Gil SY, Yu JH, Lee B, Kim MS (2014) Leptin-promoted cilia assembly is critical for normal energy balance. J Clin Invest 124(5):2193–2197. https://doi.org/10.1172/JCI69395
Handel M et al (1999) Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89(3):909–926. https://doi.org/10.1016/S0306-4522(98)00354-6
Higginbotham H, Eom TY, Mariani LE, Bachleda A, Hirt J, Gukassyan V, Cusack CL, Lai C, Caspary T, Anton ES (2012) Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev Cell 23(5):925–938. https://doi.org/10.1016/j.devcel.2012.09.019
Higginbotham H, Guo J, Yokota Y, Umberger NL, Su CY, Li J, Verma N, Hirt J, Ghukasyan V, Caspary T, Anton ES (2013) Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci 16(8):1000–1007. https://doi.org/10.1038/nn.3451
Hilgendorf KI, Johnson CT, Jackson PK (2016) The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol 39:84–92. https://doi.org/10.1016/j.ceb.2016.02.008
Hua K, Ferland RJ (2017) Fixation methods can differentially affect ciliary protein immunolabeling. Cilia 6(1):5. https://doi.org/10.1186/s13630-017-0045-9
Humbert MC, Weihbrecht K, Searby CC, Li Y, Pope RM, Sheffield VC, Seo S (2012) ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci U S A 109:19691–19696. https://doi.org/10.1073/pnas.1210916109
Iwanaga T, Miki T, Takahashi-Iwanaga H (2011) Restricted expression of somatostatin receptor 3 to primary cilia in the pancreatic islets and adenohypophysis of mice. Biomed Res 32(1):73–81. https://doi.org/10.2220/biomedres.32.73
Johansson O, Hokfelt T, Elde RP (1984) Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13(2):265–339. https://doi.org/10.1016/0306-4522(84)90233-1
Kasahara K, Miyoshi K, Murakami S, Miyazaki I, Asanuma M (2014) Visualization of astrocytic primary cilia in the mouse brain by immunofluorescent analysis using the cilia marker Arl13b. Acta Med Okayama 68(6):317–322. https://doi.org/10.18926/AMO/53020
Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11(3):188–200. https://doi.org/10.1038/nrn2789
Koemeter-Cox AI et al (2014) Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc Natl Acad Sci U S A 111:10335–10340. https://doi.org/10.1073/pnas.1403286111
Larkins CE, Aviles GD, East MP, Kahn RA, Caspary T (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 22(23):4694–4703. https://doi.org/10.1091/mbc.E10-12-0994
Lee JH, Gleeson JG (2010) The role of primary cilia in neuronal function. Neurobiol Dis 38(2):167–172. https://doi.org/10.1016/j.nbd.2009.12.022
Li Y, Wei Q, Zhang Y, Ling K, Hu J (2010) The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. J Cell Biol 189(6):1039–1051. https://doi.org/10.1083/jcb.200912001
Loktev AV, Jackson PK (2013) Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep 5(5):1316–1329. https://doi.org/10.1016/j.celrep.2013.11.011
Lu H, Toh MT, Narasimhan V, Thamilselvam SK, Choksi SP, Roy S (2015) A function for the Joubert syndrome protein Arl13b in ciliary membrane extension and ciliary length regulation. Dev Biol 397(2):225–236. https://doi.org/10.1016/j.ydbio.2014.11.009
Marshall JD, Maffei P, Collin GB, Naggert JK (2011) Alstrom syndrome: genetics and clinical overview. Current genomics 12(3):225–235. https://doi.org/10.2174/138920211795677912
Marshall WF, Nonaka S (2006) Cilia: tuning in to the cell’s antenna. Current biology : CB 16(15):R604–R614. https://doi.org/10.1016/j.cub.2006.07.012
Miyoshi K, Kasahara K, Miyazaki I, Asanuma M (2009) Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem Biophys Res Commun 388(4):757–762. https://doi.org/10.1016/j.bbrc.2009.08.099
Miyoshi K, Kasahara K, Murakami S, Takeshima M, Kumamoto N, Sato A, Miyazaki I, Matsuzaki S, Sasaoka T, Katayama T, Asanuma M (2014) Lack of dopaminergic inputs elongates the primary cilia of striatal neurons. PLoS One 9(5):e97918. https://doi.org/10.1371/journal.pone.0097918
Mok CA, Heon E, Zhen M (2010) Ciliary dysfunction and obesity. Clin Genet 77(1):18–27. https://doi.org/10.1111/j.1399-0004.2009.01305.x
Mukhopadhyay S, Jackson PK (2013) Cilia, tubby mice, and obesity. Cilia 2(1):1. https://doi.org/10.1186/2046-2530-2-1
Ou Y, Ruan Y, Cheng M, Moser JJ, Rattner JB, van der Hoorn FA (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exp Cell Res 315(16):2802–2817. https://doi.org/10.1016/j.yexcr.2009.06.028
Parisi MA (2009) Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C: Semin Med Genet 151C(4):326–340. https://doi.org/10.1002/ajmg.c.30229
Parker AK, le MM, Smith TS, Hoang-Minh LB, Atkinson EW, Ugartemendia G, Semple-Rowland S, Coleman JE, Sarkisian MR (2016) Neonatal seizures induced by pentylenetetrazol or kainic acid disrupt primary cilia growth on developing mouse cortical neurons. Exp Neurol 282:119–127. https://doi.org/10.1016/j.expneurol.2016.05.015
Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20(3):157–198. https://doi.org/10.1006/frne.1999.0183
Pissios P, Bradley RL, Maratos-Flier E (2006) Expanding the scales: the multiple roles of MCH in regulating energy balance and other biological functions. Endocr Rev 27(6):606–620. https://doi.org/10.1210/er.2006-0021
Qiu L, LeBel RP, Storm DR, Chen X (2016) Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. International journal of physiology, pathophysiology and pharmacology 8:95–108
Saghy E et al (2016) TRPA1 deficiency is protective in cuprizone-induced demyelination—a new target against oligodendrocyte apoptosis. Glia 64(12):2166–2180. https://doi.org/10.1002/glia.23051
Sattar S, Gleeson JG (2011) The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol 53(9):793–798. https://doi.org/10.1111/j.1469-8749.2011.04021.x
Schou KB, Pedersen LB, Christensen ST (2015) Ins and outs of GPCR signaling in primary cilia. EMBO Rep 16(9):1099–1113. https://doi.org/10.15252/embr.201540530
Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC (2009) Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 18(7):1323–1331. https://doi.org/10.1093/hmg/ddp031
Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633. https://doi.org/10.1126/science.1124534
Stanic D, Malmgren H, He H, Scott L, Aperia A, Hokfelt T (2009) Developmental changes in frequency of the ciliary somatostatin receptor 3 protein. Brain Res 1249:101–112. https://doi.org/10.1016/j.brainres.2008.10.024
Valente EM, Rosti RO, Gibbs E, Gleeson JG (2014) Primary cilia in neurodevelopmental disorders. Nat Rev Neurol 10(1):27–36. https://doi.org/10.1038/nrneurol.2013.247
Wang Z, Li V, Chan GC, Phan T, Nudelman AS, Xia Z, Storm DR (2009) Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS One 4(9):e6979. https://doi.org/10.1371/journal.pone.0006979
Wang Z, Phan T, Storm DR (2011) The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(15):5557–5561. https://doi.org/10.1523/JNEUROSCI.6561-10.2011
Wong ST, Trinh K, Hacker B, Chan GCK, Lowe G, Gaggar A, Xia Z, Gold GH, Storm DR (2000) Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27(3):487–497. https://doi.org/10.1016/S0896-6273(00)00060-X
Yasuda K, Rens-Domiano S, Breder CD, Law SF, Saper CB, Reisine T, Bell GI (1992) Cloning of a novel somatostatin receptor, SSTR3, coupled to adenylylcyclase. J Biol Chem 267(28):20422–20428
Acknowledgements
We thank Ms. Andrea Fábiánkovics and Ms. Krisztina Fülöp for their excellent technical assistance.
Funding
The study was supported by a grant from the University of Pécs, Hungary (grant number: KA-2015-09).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Animal experiments were conducted according to the European legislation on animal experimentation [Directives of the European Community (DIRECTIVE 2010/63/EU) and Hungarian regulations (40/2013, II.14)] in the laboratories of the University of Pécs.
The project was approved by local and national ethical boards and license was issued by government authorities (License No.:BA02/2000-44/2016 (KA-2068)).
Electronic supplementary material
ESM 1
(PDF 573 kb)
Rights and permissions
About this article
Cite this article
Sipos, É., Komoly, S. & Ács, P. Quantitative Comparison of Primary Cilia Marker Expression and Length in the Mouse Brain. J Mol Neurosci 64, 397–409 (2018). https://doi.org/10.1007/s12031-018-1036-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12031-018-1036-z


