Advertisement

Journal of Molecular Neuroscience

, Volume 64, Issue 2, pp 175–184 | Cite as

Activation of the Anti-Aging and Cognition-Enhancing Gene Klotho by CRISPR-dCas9 Transcriptional Effector Complex

  • Ci-Di Chen
  • Ella Zeldich
  • Yuexuan Li
  • Andrea Yuste
  • Carmela R. Abraham
Article

Abstract

Multiple lines of evidence show that the anti-aging and cognition-enhancing protein Klotho fosters neuronal survival, increases the anti-oxidative stress defense, and promotes remyelination of demyelinated axons. Thus, upregulation of the Klotho gene can potentially alleviate the symptoms and/or prevent the progression of age-associated neurodegenerative diseases such as Alzheimer’s disease and demyelinating diseases such as multiple sclerosis. Here we used a CRISPR-dCas9 complex to investigate single-guide RNA (sgRNA) targeting the Klotho promoter region for efficient transcriptional activation of the Klotho gene. We tested the sgRNAs within the − 1 to − 300 bp of the Klotho promoter region and identified two sgRNAs that can effectively enhance Klotho gene transcription. We examined the transcriptional activation of the Klotho gene using three different systems: a Firefly luciferase (FLuc) and NanoLuc luciferase (NLuc) coincidence reporter system, a NLuc knock-in in Klotho 3′-UTR using CRISPR genomic editing, and two human cell lines: neuronal SY5Y cells and kidney HK-2 cells that express Klotho endogenously. The two sgRNAs enhanced Klotho expression at both the gene and protein levels. Our results show the feasibility of gene therapy for targeting Klotho using CRISPR technology. Enhancing Klotho levels has a therapeutic potential for increasing cognition and treating age-associated neurodegenerative, demyelinating and other diseases, such as chronic kidney disease and cancer.

Keywords

Alzheimer’s disease Multiple sclerosis Neuroprotection Myelin Chronic kidney disease Cancer 

Abbreviations

CRISPR

clustered regularly interspaced short palindromic repeat

Cas

CRISPR-associated

dCas9

nuclease-deficient Cas9

sgRNA

single-guide RNA

FLuc

firefly luciferase

NLuc

NanoLuc luciferase

3′-UTR

3′-untranslated region

PCR

polymerase chain reaction

DMEM

Dulbecco’s modified Eagle’s Medium

PBS

phosphate buffered saline

FBS

fetal bovine serum

BSA

bovine serum albumin

SDS-PAGE

sodium dodecyl sulfate polyacrylamide gel electrophoresis

PGK

phosphoglycerate kinase

Notes

Acknowledgements

We thank Dr. Jason Nasse for reading and helpful suggestions for the manuscript.

Funding information

This work was supported by NIH grants R56 AG051638, R44 AG053084 and R01 AG048927. 

References

  1. Abraham CR, Chen C, Cuny GD, Glicksman MA, Zeldich E (2012) Small-molecule Klotho enhancers as novel treatment of neurodegeneration. Future Med Chem 4(13):1671–1679.  https://doi.org/10.4155/fmc.12.134 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E (2016) Klotho is a neuroprotective and cognition-enhancing protein. Vitam Horm 101:215–238.  https://doi.org/10.1016/bs.vh.2016.02.004 CrossRefPubMedGoogle Scholar
  3. Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-o M, Kaether C (2009) Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett 583(19):3221–3224.  https://doi.org/10.1016/j.febslet.2009.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen CD, Li H, Liang J, Hixson K, Zeldich E, Abraham CR (2015) The anti-aging and tumor suppressor protein Klotho enhances differentiation of a human oligodendrocytic hybrid cell line. J Mol Neurosci : MN 55(1):76–90.  https://doi.org/10.1007/s12031-014-0336-1 CrossRefPubMedGoogle Scholar
  5. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A 104(50):19796–19801.  https://doi.org/10.1073/pnas.0709805104 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen CD, Sloane JA, Li H, Aytan N, Giannaris EL, Zeldich E, Hinman JD, Dedeoglu A, Rosene DL, Bansal R, Luebke JI, Kuro-o M, Abraham CR (2013) The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci 33(5):1927–1939.  https://doi.org/10.1523/JNEUROSCI.2080-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheng KC, Inglese J (2012) A coincidence reporter-gene system for high-throughput screening; Nat Methods 9(10): 937.  https://doi.org/10.1038/nmeth.2170
  8. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230–232.  https://doi.org/10.1038/nbt.2507 CrossRefPubMedGoogle Scholar
  9. Choi BH, Kim CG, Lim Y, Lee YH, Shin SY (2010) Transcriptional activation of the human Klotho gene by epidermal growth factor in HEK293 cells; role of Egr-1. Gene 450(1-2):121–127.  https://doi.org/10.1016/j.gene.2009.11.004 CrossRefPubMedGoogle Scholar
  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, Sturm VE, Kim D, Klein E, Yu GQ, Ho K, Eilertson KE, Yu L, Kuro-o M, de Jager PL, Coppola G, Small GW, Bennett DA, Kramer JH, Abraham CR, Miller BL, Mucke L (2014) Life extension factor klotho enhances cognition. Cell Rep 7(4):1065–1076.  https://doi.org/10.1016/j.celrep.2014.03.076 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, Ho K, Yu GQ, Kim D, Betourne A, Kuro-o M, Masliah E, Abraham CR, Mucke L (2015) Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci : Off J Socr Neuroscience 35(6):2358–2371.  https://doi.org/10.1523/JNEUROSCI.5791-12.2015 CrossRefGoogle Scholar
  13. Gersbach CA, Perez-Pinera P (2014) Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine. Expert Opin Ther Targets 18(8):835–839.  https://doi.org/10.1517/14728222.2014.913572 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hasson SA, Fogel AI, Wang C, MacArthur R, Guha R, Heman-Ackah S, Martin S, Youle RJ, Inglese J (2015) Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. ACS Chem Biol 10(5):1188–1197.  https://doi.org/10.1021/cb5010417 CrossRefPubMedGoogle Scholar
  15. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2:e00471CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141(1):219–223.  https://doi.org/10.1242/dev.103341 CrossRefPubMedPubMedCentralGoogle Scholar
  17. King GD, Chen C, Huang MM, Zeldich E, Brazee PL, Schuman ER, Robin M, Cuny GD, Glicksman MA, Abraham CR (2012) Identification of novel small molecules that elevate Klotho expression. Biochem J 441(1):453–461.  https://doi.org/10.1042/BJ20101909 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588.  https://doi.org/10.1038/nature14136 CrossRefPubMedGoogle Scholar
  19. Kuro-o M (2012) Klotho in health and disease. Curr Opin Nephrol Hypertens 21(4):362–368.  https://doi.org/10.1097/MNH.0b013e32835422ad CrossRefPubMedGoogle Scholar
  20. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51.  https://doi.org/10.1038/36285 CrossRefPubMedGoogle Scholar
  21. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone Klotho. Science 309(5742):1829–1833.  https://doi.org/10.1126/science.1112766 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826.  https://doi.org/10.1126/science.1232033 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Massó A, Sánchez A, Bosch A, Giménez-Llort L, Chillón M (2017) Secreted αKlotho isoform protects against age-dependent memory deficits. Mol Psychiatry.  https://doi.org/10.1038/mp.2017.211
  24. Massó A, Sanchez A, Gimenez-Llort L, Lizcano JM, Canete M, Garcia B, Torres-Lista V, Puig M, Bosch A, Chillon M (2015) Secreted and transmembrane alphaKlotho isoforms have different spatio-temporal profiles in the brain during aging and Alzheimer’s disease progression. PLoS One 10(11):e0143623.  https://doi.org/10.1371/journal.pone.0143623 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Masuda H, Chikuda H, Suga T, Kawaguchi H, Kuro-o M (2005) Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice. Mech Ageing Dev 126(12):1274–1283.  https://doi.org/10.1016/j.mad.2005.07.007 CrossRefPubMedGoogle Scholar
  26. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242(3):626–630.  https://doi.org/10.1006/bbrc.1997.8019 CrossRefPubMedGoogle Scholar
  27. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308.  https://doi.org/10.1038/nprot.2013.143 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Schuck BW, MacArthur R, Inglese J (2017) Quantitative high-throughput screening using a coincidence reporter biocircuit. Curr Protoc Neurosci 79:5 32 31–35 32 27Google Scholar
  29. Zeldich E, Chen CD, Avila R, Medicetty S, Abraham CR (2015) The anti-aging protein Klotho enhances remyelination following cuprizone-induced demyelination. J Mol Neurosci : MN 57(2):185–196.  https://doi.org/10.1007/s12031-015-0598-2 CrossRefPubMedGoogle Scholar
  30. Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Tucker Zhou TB, Harris DA, Abraham CR (2014) The neuroprotective effect of klotho is mediated via regulation of members of the redox system. J Biol Chem 289(35):24700–24715.  https://doi.org/10.1074/jbc.M114.567321 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication [February/2018]

Authors and Affiliations

  • Ci-Di Chen
    • 1
    • 2
  • Ella Zeldich
    • 1
    • 2
  • Yuexuan Li
    • 1
  • Andrea Yuste
    • 2
  • Carmela R. Abraham
    • 1
    • 2
    • 3
  1. 1.Department of BiochemistryBoston University School of MedicineBostonUSA
  2. 2.Klogene Therapeutics, Inc.BostonUSA
  3. 3.Department of Pharmacology and Experimental Therapeutics, Boston University School of MedicineBostonUSA

Personalised recommendations