Journal of Molecular Neuroscience

, Volume 63, Issue 2, pp 185–197 | Cite as

Single-Base Resolution Mapping of 5-Hydroxymethylcytosine Modifications in Hippocampus of Alzheimer’s Disease Subjects

  • Elizabeth M. Ellison
  • Melissa A. Bradley-Whitman
  • Mark A. Lovell
Article

Abstract

Epigenetic modifications to cytosine have been shown to regulate transcription in cancer, embryonic development, and recently neurodegeneration. While cytosine methylation studies are now common in neurodegenerative research, hydroxymethylation studies are rare, particularly genome-wide mapping studies. As an initial study to analyze 5-hydroxymethylcytosine (5-hmC) in the Alzheimer’s disease (AD) genome, reduced representation hydroxymethylation profiling (RRHP) was used to analyze more than 2 million sites of possible modification in hippocampal DNA of sporadic AD and normal control subjects. Genes with differentially hydroxymethylated regions were filtered based on previously published microarray data for altered gene expression in hippocampal DNA of AD subjects. Our data show significant pathways for altered levels of 5-hmC in the hippocampus of AD subjects compared to age-matched normal controls involved in signaling, energy metabolism, cell function, gene expression, protein degradation, and cell structure and stabilization. Overall, our data suggest a possible role for the dysregulation of epigenetic modifications to cytosine in late stage AD.

Keywords

5-Hydroxymethylcytosine Alzheimer’s disease Hippocampus Epigenetics 

Notes

Acknowledgements

This research was supported by National Institutes of Health grant P30-AG028383 and by a grant from the office of the Vice President for Research of the University of Kentucky. The authors thank the UK-ADC Biostatistics Core for subject data and Ms. Paula Thomason for editorial assistance.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12031_2017_969_MOESM1_ESM.xlsx (11 kb)
ESM 1 (XLSX 11 kb)
12031_2017_969_MOESM2_ESM.xlsx (2.8 mb)
ESM 2 (XLSX 2897 kb)
12031_2017_969_MOESM3_ESM.xlsx (35 kb)
ESM 3 (XLSX 34 kb)
12031_2017_969_MOESM4_ESM.xlsx (36 kb)
ESM 4 (XLSX 35 kb)

References

  1. Abdolmaleky HM, Yaqubi S, Papageorgis P, Lambert AW, Ozturk S, Sivaraman V, Thiagalingam S (2011) Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res 129:183–190PubMedCrossRefGoogle Scholar
  2. Acquaah-Mensah GK, Taylor RC (2016) Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights. Gene 586:77–86PubMedCrossRefGoogle Scholar
  3. Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB (2011) Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol 71:365–376PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman AP, Albin RL, Hu H, Rozek LS (2012) Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. J Alzheimer's Dis: JAD 29:571–588PubMedGoogle Scholar
  6. Barone E, Mosser S, Fraering PC (2014) Inactivation of brain Cofilin-1 by age, Alzheimer's disease and gamma-secretase. Biochim Biophys Acta 1842:2500–2509PubMedCrossRefGoogle Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Ser B Stat Methodol 57:289–300Google Scholar
  8. Bernstein AI, Lin Y, Street RC et al (2016) 5-Hydroxymethylation-associated epigenetic modifiers of Alzheimer's disease modulate tau-induced neurotoxicity. Hum Mol Genet 25:2437–2450PubMedPubMedCentralGoogle Scholar
  9. Bertram L, Lange C, Mullin K et al (2008) Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE. Am J Hum Genet 83:623–632PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. U. S. A. 101:2173–2178PubMedPubMedCentralCrossRefGoogle Scholar
  11. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937PubMedCrossRefGoogle Scholar
  12. Braak H, Braak E (1995) Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 16:271–278 discussion 278-284PubMedCrossRefGoogle Scholar
  13. Bradley-Whitman MA, Lovell MA (2013) Epigenetic changes in the progression of Alzheimer's disease. Mech Ageing Dev 134:486–495PubMedCrossRefGoogle Scholar
  14. Breiling A, Lyko F (2015) Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 8:24PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57:695–703PubMedCrossRefGoogle Scholar
  16. Chouliaras L, Mastroeni D, Delvaux E et al (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol Aging 34:2091–2099PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ciavardelli D, Silvestri E, Del Viscovo A et al (2010) Alterations of brain and cerebellar proteomes linked to Abeta and tau pathology in a female triple-transgenic murine model of Alzheimer's disease. Cell Death Dis 1:e90PubMedPubMedCentralCrossRefGoogle Scholar
  18. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205PubMedCrossRefGoogle Scholar
  19. Condliffe D, Wong A, Troakes C et al (2014) Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain. Neurobiol Aging 35:1850–1854PubMedPubMedCentralCrossRefGoogle Scholar
  20. Coppieters N, Dieriks BV, Lill C, Faull RL, Curtis MA, Dragunow M (2014) Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging 35:1334–1344PubMedCrossRefGoogle Scholar
  21. Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477PubMedCrossRefGoogle Scholar
  22. De Ferrari GV, Papassotiropoulos A, Biechele T et al (2007) Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 104:9434–9439PubMedPubMedCentralCrossRefGoogle Scholar
  23. De Jager PL, Srivastava G, Lunnon K et al (2014) Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17:1156–1163PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ellison EM, Abner EL, Lovell MA (2017) Multiregional analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of Alzheimer's disease. J Neurochem 140:383–394PubMedCrossRefGoogle Scholar
  25. Etcheberrigaray E, Gibson GE, Alkon DL (1994) Molecular mechanisms of memory and the pathophysiology of Alzheimer's disease. Ann N Y Acad Sci 747:245–255PubMedCrossRefGoogle Scholar
  26. Falk J, Bechara A, Fiore R et al (2005) Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48:63–75PubMedCrossRefGoogle Scholar
  27. Fargo K (2014) 2014 Alzheimer's disease facts and figures. Alzheimer's Demen: J Alzheimer's Assoc 10:e47–e92CrossRefGoogle Scholar
  28. Ferreira IL, Resende R, Ferreiro E, Rego AC, Pereira CF (2010) Multiple defects in energy metabolism in Alzheimer's disease. Curr Drug Targets 11:1193–1206PubMedCrossRefGoogle Scholar
  29. Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state"A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  30. Ghanevati M, Miller CA (2005) Phospho-beta-catenin accumulation in Alzheimer's disease and in aggresomes attributable to proteasome dysfunction. J Mol Neurosci : MN 25:79–94PubMedCrossRefGoogle Scholar
  31. Godoy JA, Rios JA, Zolezzi JM, Braidy N, Inestrosa NC (2014) Signaling pathway cross talk in Alzheimer's disease. Cell Commun and signaling : CCS 12:23PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gong Y, Lippa CF, Zhu J, Lin Q, Rosso AL (2009) Disruption of glutamate receptors at shank-postsynaptic platform in Alzheimer's disease. Brain Res 1292:191–198PubMedPubMedCentralCrossRefGoogle Scholar
  33. Grabbe C, Husnjak K, Dikic I (2011) The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 12:295–307PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hart M, Concordet JP, Lassot I et al (1999) The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Current biology : CB 9:207–210PubMedCrossRefGoogle Scholar
  35. Horwood JM, Dufour F, Laroche S, Davis S (2006) Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci 23:3375–3384PubMedCrossRefGoogle Scholar
  36. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13PubMedCrossRefGoogle Scholar
  37. Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5:e8888PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hyman BT, Trojanowski JQ (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan institute working group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56:1095–1097PubMedCrossRefGoogle Scholar
  39. Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15:825–833PubMedCrossRefGoogle Scholar
  40. Issa JP (2014) Aging and epigenetic drift: a vicious cycle. J Clin Invest 124:24–29PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361PubMedCrossRefGoogle Scholar
  42. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462PubMedCrossRefGoogle Scholar
  44. Kang S, Jeong H, Baek JH et al (2016) PiB-PET imaging-based serum proteome profiles predict mild cognitive impairment and Alzheimer's disease. J Alzheimer's Dis: JAD 53:1563–1576PubMedCrossRefGoogle Scholar
  45. Karch CM, Goate AM (2015) Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77:43–51PubMedCrossRefGoogle Scholar
  46. Killick R, Ribe EM, Al-Shawi R et al (2014) Clusterin regulates beta-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol Psychiatry 19:88–98PubMedCrossRefGoogle Scholar
  47. Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–793PubMedPubMedCentralCrossRefGoogle Scholar
  48. Krogan NJ, Lippman S, Agard DA, Ashworth A, Ideker T (2015) The cancer cell map initiative: defining the hallmark networks of cancer. Mol Cell 58:690–698PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kulathu Y, Komander D (2012) Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13:508–523PubMedCrossRefGoogle Scholar
  50. Kummer MP, Hammerschmidt T, Martinez A et al (2014) Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J neurosci : Off J Soc Neurosci 34:8845–8854CrossRefGoogle Scholar
  51. Kurtovic-Kozaric A, Przychodzen B, Singh J et al (2015) PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29:126–136PubMedCrossRefGoogle Scholar
  52. Lai MK, Tsang SW, Alder JT, Keene J, Hope T, Esiri MM, Francis PT, Chen CP (2005) Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer's disease. Psychopharmacology 179:673–677PubMedCrossRefGoogle Scholar
  53. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41:1094–1099PubMedCrossRefGoogle Scholar
  54. Lashley T, Gami P, Valizadeh N, Li A, Revesz T, and Balazs R (2015) Alterations in global DNA methylation and hydroxymethylation are not detected in Alzheimer's disease. Neuropathol Appl Neurobiol 41:497–506Google Scholar
  55. Le AP, Huang Y, Pingle SC, Kesari S, Wang H, Yong RL, Zou H, Friedel RH (2015) Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget 6:7293–7304PubMedPubMedCentralCrossRefGoogle Scholar
  56. Liang WS, Reiman EM, Valla J et al (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. U. S. A. 105:4441–4446PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lovell MA, Markesbery WR (2007a) Oxidative damage in mild cognitive impairment and early Alzheimer's disease. J Neurosci Res 85:3036–3040PubMedCrossRefGoogle Scholar
  58. Lovell MA, Markesbery WR (2007b) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res 35:7497–7504PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lovell MA, Soman S, Bradley MA (2011) Oxidatively modified nucleic acids in preclinical Alzheimer's disease (PCAD) brain. Mech Ageing Dev 132:443–448PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lunnon K, Smith R, Hannon E et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci 17:1164–1170PubMedPubMedCentralCrossRefGoogle Scholar
  61. Maddika S, Ande SR, Panigrahi S et al (2007) Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat : Reviews and commentaries in antimicrobial and anticancer chemotherapy 10:13–29CrossRefGoogle Scholar
  62. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448PubMedPubMedCentralCrossRefGoogle Scholar
  63. Marin MA, Ziburkus J, Jankowsky J, Rasband MN (2016) Amyloid-beta plaques disrupt axon initial segments. Exp Neurol 281:93–98PubMedPubMedCentralCrossRefGoogle Scholar
  64. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 23:134–147PubMedCrossRefGoogle Scholar
  65. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2010) Epigenetic changes in Alzheimer's disease: decrements in DNA methylation. Neurobiol Aging 31:2025–2037PubMedCrossRefGoogle Scholar
  66. Mastroeni DCL, Van den Hove D, Nolz J, Rutten B, Delvaux E, Coleman P (2016) Increased 5-hydroxymethylation levels in the sub ventricular zone of the Alzheimer's brain. Neuroepigenetics 6:26–31CrossRefGoogle Scholar
  67. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 34:939–944PubMedCrossRefGoogle Scholar
  68. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616PubMedCrossRefGoogle Scholar
  69. Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, D'Eustachio P, Stein L (2012) Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers 4:1180–1211PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mirra SS, Heyman A, McKeel D et al (1991) The consortium to establish a registry for Alzheimer's disease (CERAD) Part II Stand. Neuropathol Assessment Alzheimer's Dis Neurol 41:479–486Google Scholar
  71. Nabel CS, Manning SA, Kohli RM (2012) The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential. ACS Chem Biol 7:20–30PubMedCrossRefGoogle Scholar
  72. Nelson PT, Jicha GA, Schmitt FA, Liu H, Davis DG, Mendiondo MS, Abner EL, Markesbery WR (2007) Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles "do count" when staging disease severity. J Neuropathol Exp Neurol 66:1136–1146PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nestor CE, Ottaviano R, Reddington J et al (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477PubMedPubMedCentralCrossRefGoogle Scholar
  74. Newman ME (2006) Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103:8577–8582PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nishimura D (2004) Biotech Software & Internet Report 2:117–120CrossRefGoogle Scholar
  76. Nusse R (2012) Wnt signaling. Cold Spring Harb Perspect Biol 4:a011163. https://doi.org/10.1101/cshperspect.a011163
  77. Orre M, Kamphuis W, Osborn LM, Jansen AH, Kooijman L, Bossers K, Hol EM (2014a) Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. Neurobiol Aging 35:2746–2760PubMedCrossRefGoogle Scholar
  78. Orre M, Kamphuis W, Osborn LM, Melief J, Kooijman L, Huitinga I, Klooster J, Bossers K, Hol EM (2014b) Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging 35:1–14PubMedCrossRefGoogle Scholar
  79. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293PubMedPubMedCentralCrossRefGoogle Scholar
  80. Petterson A, Chung TH, Tan D, Sun X, Jia XY (2014) RRHP: a tag-based approach for 5-hydroxymethylcytosine mapping at single-site resolution. Genome Biol 15:456PubMedPubMedCentralCrossRefGoogle Scholar
  81. Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20:1242–1253PubMedCrossRefGoogle Scholar
  82. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rieser E, Cordier SM, Walczak H (2013) Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci 38:94–102PubMedCrossRefGoogle Scholar
  84. Riise J, Plath N, Pakkenberg B, Parachikova A (2015) Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease. J Neural Transm 122:1303–1318PubMedCrossRefGoogle Scholar
  85. Rota E, Bellone G, Rocca P, Bergamasco B, Emanuelli G, Ferrero P (2006) Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer's disease patients. Neurol sci: off j Italian Neurol Soc Italian Soc Clin Neurophysiol 27:33–39CrossRefGoogle Scholar
  86. Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 22:6537–6549PubMedPubMedCentralCrossRefGoogle Scholar
  87. Salins P, He Y, Olson K, Glazner G, Kashour T, Amara F (2008) TGF-beta1 is increased in a transgenic mouse model of familial Alzheimer's disease and causes neuronal apoptosis. Neurosci Lett 430:81–86PubMedCrossRefGoogle Scholar
  88. Sanchez-Mut JV, Heyn H, Vidal E et al (2016) Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl Psychiatry 6:e718PubMedPubMedCentralCrossRefGoogle Scholar
  89. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the pathway interaction database. Nucleic Acids Res 37:D674–D679PubMedCrossRefGoogle Scholar
  90. Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR (2000) "preclinical" AD revisited: neuropathology of cognitively normal older adults. Neurology 55:370–376PubMedCrossRefGoogle Scholar
  91. Schuler P, Miller AK (2012) Sequencing the sixth base (5-hydroxymethylcytosine): selective DNA oxidation enables base-pair resolution. Angew Chem 51:10704–10707CrossRefGoogle Scholar
  92. Selkoe DJ (1997) Alzheimer's disease: genotypes, phenotypes, and treatments. Science 275:630–631PubMedCrossRefGoogle Scholar
  93. Seshadri S, Fitzpatrick AL, Ikram MA et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832–1840PubMedPubMedCentralCrossRefGoogle Scholar
  94. Shah S, McRae AF, Marioni RE et al (2014) Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res 24:1725–1733PubMedPubMedCentralCrossRefGoogle Scholar
  95. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shen L, Shao NY, Liu X, Maze I, Feng J, Nestler EJ (2013) diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PloS one 8:e65598PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sherva R, Baldwin CT, Inzelberg R et al (2011) Identification of novel candidate genes for Alzheimer's disease by autozygosity mapping using genome wide SNP data. J Alzheimer's dis : JAD 23:349–359PubMedGoogle Scholar
  98. Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24:473–486PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sumi T, Matsumoto K, Takai Y, Nakamura T (1999) Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J Cell Biol 147:1519–1532PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tan MS, Yu JT, Tan L (2013) Bridging integrator 1 (BIN1): form, function, and Alzheimer's disease. Trends Mol Med 19:594–603PubMedCrossRefGoogle Scholar
  103. Teschendorff AE, West J, Beck S (2013) Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet 22:R7–R15PubMedPubMedCentralCrossRefGoogle Scholar
  104. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141PubMedPubMedCentralCrossRefGoogle Scholar
  105. Uchida Y, Ohshima T, Sasaki Y et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes cells: Devoted mol cell mechan 10:165–179CrossRefGoogle Scholar
  106. Vandin F, Clay P, Upfall E, Raphael BJ (2012) Discovery of mutated sub networks associated with clinical data in cancer. Pac Symp Biocompt 2012:55–56. https://doi.org/10.1142/9789814366496_0006
  107. Vandin F, Upfal E, Raphael BJ (2011) Algorithms for detecting significantly mutated pathways in cancer. J Computation Biol : J Comput Mol Mell Biol 18:507–522CrossRefGoogle Scholar
  108. Vargas JY, Fuenzalida M, Inestrosa NC (2014) In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer's disease model. J Neurosci :Official J Socr Neurosci 34:2191–2202CrossRefGoogle Scholar
  109. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041PubMedPubMedCentralCrossRefGoogle Scholar
  110. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44:181–193PubMedCrossRefGoogle Scholar
  111. Wan Q, Xiong ZG, Man HY, Ackerley CA, Braunton J, Lu WY, Becker LE, MacDonald JF, Wang YT (1997) Recruitment of functional GABA(a) receptors to postsynaptic domains by insulin. Nature 388:686–690PubMedCrossRefGoogle Scholar
  112. Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96:825–832PubMedCrossRefGoogle Scholar
  113. Watson CT, Roussos P, Garg P, Ho DJ, Azam N, Katsel PL, Haroutunian V, Sharp AJ (2016) Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer's disease. Genome Med 8:5PubMedPubMedCentralCrossRefGoogle Scholar
  114. Weber AR, Krawczyk C, Robertson AB, Kusnierczyk A, Vagbo CB, Schuermann D, Klungland A, Schar P (2016) Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 7:10806PubMedPubMedCentralCrossRefGoogle Scholar
  115. Weissman L, Jo DG, Sorensen MM, de Souza-Pinto NC, Markesbery WR, Mattson MP, Bohr VA (2007) Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Res 35:5545–5555PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wen L, Li X, Yan L et al (2014) Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. Genome Biol 15:R49PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wen L and Tang F (2014) Genomic distribution and possible functions of DNA hydroxymethylation in the brain. Genomics 104:341–346Google Scholar
  118. Yu L, Chibnik LB, Srivastava GP et al (2015) Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA neurol 72:15–24PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhang L, Guo XQ, Chu JF, Zhang X, Yan ZR, Li YZ (2015) Potential hippocampal genes and pathways involved in Alzheimer's disease: a bioinformatic analysis. Gen Mol Res: GMR 14:7218–7232CrossRefGoogle Scholar
  120. Zhao J, Zhu Y, Yang J, Li L, Wu H, De Jager PL, Jin P and Bennett DA (2017) A genome-wide profiling of brain DNA hydroxymethylation in Alzheimer's disease. Alzheimer's Dement 13:674–688Google Scholar
  121. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative Med Cell Longev 2013:316523Google Scholar
  122. Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X (2016) Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci 8:303PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhu X, Rottkamp CA, Raina AK, Brewer GJ, Ghanbari HA, Boux H, Smith MA (2000) Neuronal CDK7 in hippocampus is related to aging and Alzheimer disease. Neurobiol Aging 21:807–813PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KentuckyLexingtonUSA
  2. 2.Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA

Personalised recommendations