Skip to main content

Advertisement

Log in

The Effects of Voluntary Physical Exercise-Activated Neurotrophic Signaling in Rat Hippocampus on mRNA Levels of Downstream Signaling Molecules

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Physical exercise results in the increased expression of neurotrophic factors and the subsequent induction of signal transduction cascades with a positive impact on neuronal functions. In this study, we used a voluntary physical exercise rat model to determine correlations in hippocampus mRNA expression of the neurotropic factors Bdnf, VegfA, and Igf1; their receptors TrkB, Igf1R, VegfR1, and VegfrR2; and downstream signal transducers Creb, Syn1, and Vgf. In hippocampi of physically exercised rats, the mRNA expression levels of Bdnf transcript 4 (Bdnf-t4), VegfA, and Igf1, as well as VegfR1, TrkB, Creb, Vgf, and Syn1, were increased. Bdnf-t4 mRNA expression positively correlated with mRNA expression of Creb, Vgf, and Syn1 in hippocampi of exercised rats. A correlation between Bdnf-t4 and Syn1 mRNA expression was also observed in hippocampi of sedentary rats. Igf1 and VegfA mRNA expression was positively correlated in hippocampi of both exercised and sedentary rats. But, neither Igf1 nor VegfA mRNA expression was correlated with the expression of Bdnf-t4 or the expression of the signal transducers Creb, Syn1, and Vgf. In hippocampi of exercised rats, Creb mRNA expression was positively correlated with TrkB, Syn1, and Vgf mRNA expression and with the correlation between Creb and Vgf mRNA expression also observed in hippocampi of sedentary rats. To examine for causality of the in vivo observed correlated mRNA expression levels between Bdnf-t4 and the other examined transcripts, we used nuclease-deactivated CRISPR-Cas9 fused with VP64 to induce mRNA expression of endogenous Bdnf-t4 in rat PC12 cells. Following Bdnf-t4 mRNA induction, we observed increased Creb mRNA expression. This in vitro result is in accordance with the in vivo results and supports that under specified conditions, an increase in Creb mRNA expression can be a downstream signal transduction event due to induction of endogenous Bdnf mRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Bdnf:

Brain-derived neurotrophic factor

Bdnf–t4 :

Bdnf transcript 4

Creb:

cAMP-response-element binding protein

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas9:

CRISPR associated protein 9

dCas9:

nuclease deficient Cas9

Igf1:

Insulin-like growth factor 1

Igf1R:

Insulin-like growth factor 1 receptor

NE:

Norepinephrine

Ngf:

Nerve growth factor

p75NTR:

p75 neurotrophin receptor

PI3K:

Phosphatidylinositol-3 kinase

RT:

Reverse transcriptase

RT-qPCR:

RT quantitative PCR

SEM:

Standard error of the mean

sgRNA:

Short guide RNA

Syn1:

Synapsin 1

TrkB:

Tropomyosin receptor kinase B

TrkB.tk+:

Full-length TrkB receptor

TrkB.t1:

Truncated TrkB receptor

VegfA:

Vascular endothelial growth factor A

VegfR:

Vascular endothelial growth factor receptor

VIP:

Vasoactive intestinal peptide

References

  • Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. The Journal of neuroscience: the official journal of the Society for Neuroscience 20(8):2896–2903

    CAS  Google Scholar 

  • Akagi Y, Liu W, Zebrowski B, Xie K, Ellis LM (1998) Regulation of vascular endothelial growth factor expression in human colon cancer by insulin-like growth factor-I. Cancer Res 58(17):4008–4014

    CAS  PubMed  Google Scholar 

  • Alder J, Thakker-Varia S, Bangasser DA, Kuroiwa M, Plummer MR, Shors TJ, Black IB (2003) Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. The Journal of neuroscience: the official journal of the Society for Neuroscience 23(34):10800–10808

    CAS  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Androutsellis-Theotokis A, McCormack WJ, Bradford HF, Stern GM, Pliego-Rivero FB (1996) The depolarisation-induced release of [125I] BDNF from brain tissue. Brain Res 743(1–2):40–48

    Article  CAS  PubMed  Google Scholar 

  • Anlar B, Sullivan KA, Feldman EL (1999) Insulin-like growth factor-I and central nervous system development. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 31(2–3):120–125

    Article  CAS  PubMed  Google Scholar 

  • Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25(11):1386–1403

    Article  CAS  PubMed  Google Scholar 

  • Bechara RG, Lyne R, Kelly AM (2014) BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat. Behav Brain Res 275:297–306

    Article  CAS  PubMed  Google Scholar 

  • Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 105(7):2711–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, Ito S, Cooper S, Kondo K, Koseki Y et al (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157(6):1445–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonni A, Ginty DD, Dudek H, Greenberg ME (1995) Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci 6(2):168–183

    Article  CAS  PubMed  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. The Journal of neuroscience: the official journal of the Society for Neuroscience 21(15):5678–5684

    CAS  Google Scholar 

  • Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7(1):18–21

    Article  CAS  PubMed  Google Scholar 

  • Chen MJ, Nguyen TV, Pike CJ, Russo-Neustadt AA (2007) Norepinephrine induces BDNF and activates the PI-3K and MAPK cascades in embryonic hippocampal neurons. Cell Signal 19(1):114–128

    Article  CAS  PubMed  Google Scholar 

  • Chen MJ, Russo-Neustadt AA (2007) Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors 25(2):118–131

    Article  CAS  PubMed  Google Scholar 

  • Chen MJ, Russo-Neustadt AA (2009) Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent. Hippocampus 19(10):962–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WG, West AE, Tao X, Corfas G, Szentirmay MN, Sawadogo M, Vinson C, Greenberg ME (2003) Upstream stimulatory factors are mediators of Ca2+-responsive transcription in neurons. The Journal of neuroscience: the official journal of the Society for Neuroscience 23(7):2572–2581

    CAS  Google Scholar 

  • Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30(9):464–472

    Article  CAS  PubMed  Google Scholar 

  • Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345(6277):718–721

    Article  CAS  PubMed  Google Scholar 

  • De Meyts P (2002) Insulin and insulin-like growth factors: the paradox of signaling specificity. Growth hormone & IGF research: official journal of the Growth Hormone Research Society and the International IGF Research Society 12(2):81–83

    Article  CAS  Google Scholar 

  • Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140(3):823–833

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35(1):47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilam R, Davidson A, Gozes I, Segal M (1999) Locomotor activity causes a rapid up-regulation of vasoactive intestinal peptide in the rat hippocampus. Hippocampus 9(5):534–541

    Article  CAS  PubMed  Google Scholar 

  • Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo CJ, Palmer TD (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18(10):2803–2812

    Article  PubMed  Google Scholar 

  • Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Fenner BM (2012) Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev 23(1–2):15–24

    Article  CAS  PubMed  Google Scholar 

  • Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19(5):1031–1047

    Article  CAS  PubMed  Google Scholar 

  • Foltran RB, Diaz SL (2016) BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem 138(2):204–221

    Article  CAS  PubMed  Google Scholar 

  • Fryer RH, Kaplan DR, Feinstein SC, Radeke MJ, Grayson DR, Kromer LF (1996) Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. J Comp Neurol 374(1):21–40

    Article  CAS  PubMed  Google Scholar 

  • Goggi J, Pullar IA, Carney SL, Bradford HF (2003) The control of [125I] BDNF release from striatal rat brain slices. Brain Res 967(1–2):201–209

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28(11):2278–2287

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G (2011) Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 33(3):383–390

    Article  CAS  PubMed  Google Scholar 

  • Griffin EW, Bechara RG, Birch AM, Kelly AM (2009) Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 19(10):973–980

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR, Duman RS (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13(12):1476–1482

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99(18):11946–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima M, Takei N, Numakawa T, Ishikawa Y, Suzuki S, Matsumoto T, Katoh-Semba R, Nawa H, Hatanaka H (2001) Biological characterization and optical imaging of brain-derived neurotrophic factor-green fluorescent protein suggest an activity-dependent local release of brain-derived neurotrophic factor in neurites of cultured hippocampal neurons. J Neurosci Res 64(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Saruta J, To M, Shiiki N, Sato C, Tsukinoki K (2010) Expression and role of the BDNF receptor-TrkB in rat adrenal gland under acute immobilization stress. Acta Histochem Cytochem 43(6):139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588

    Article  CAS  PubMed  Google Scholar 

  • Kristensen B, Georg B, Fahrenkrug J (1997) Cholinergic regulation of VIP gene expression in human neuroblastoma cells. Brain Res 775(1–2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247 e17

    Article  CAS  PubMed  Google Scholar 

  • Murray PS, Holmes PV (2011) An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. Int J Pept 2011:654085

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakajima K, Honda S, Tohyama Y, Imai Y, Kohsaka S, Kurihara T (2001) Neurotrophin secretion from cultured microglia. J Neurosci Res 65(4):322–331

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Tohyama Y, Kohsaka S, Kurihara T (2002) Ceramide activates microglia to enhance the production/secretion of brain-derived neurotrophic factor (BDNF) without induction of deleterious factors in vitro. J Neurochem 80(4):697–705

    Article  CAS  PubMed  Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726(1–2):49–56

    Article  CAS  PubMed  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 13(1):9–22

    CAS  Google Scholar 

  • Patel NJ, Chen MJ, Russo-Neustadt AA (2010) Norepinephrine and nitric oxide promote cell survival signaling in hippocampal neurons. Eur J Pharmacol 633(1–3):1–9

    Article  CAS  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. The Journal of neuroscience: the official journal of the Society for Neuroscience 21(17):6706–6717

  • Poulaki V, Mitsiades CS, McMullan C, Sykoutri D, Fanourakis G, Kotoula V, Tseleni-Balafouta S, Koutras DA, Mitsiades N (2003) Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab 88(11):5392–5398

    Article  CAS  PubMed  Google Scholar 

  • Pozzo-Miller LD, Gottschalk W, Zhang L, McDermott K, Du J, Gopalakrishnan R, Oho C, Sheng ZH, Lu B (1999) Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. The Journal of neuroscience: the official journal of the Society for Neuroscience 19(12):4972–4983

    CAS  Google Scholar 

  • Rajan P, Symes AJ, Fink JS (1996) STAT proteins are activated by ciliary neurotrophic factor in cells of central nervous system origin. J Neurosci Res 43(4):403–411

    Article  CAS  PubMed  Google Scholar 

  • Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101(2):305–312

    Article  CAS  PubMed  Google Scholar 

  • Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, Fernandez SC, Sanderson KL, Voddi M, McIntosh TK (1997) Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 147(2):418–427

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD (2012) The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol 846:1–12

    Article  CAS  PubMed  Google Scholar 

  • Solvsten CA, de Paoli F, Christensen JH, Nielsen AL (2016) Voluntary physical exercise induces expression and epigenetic remodeling of Vegf A in the rat hippocampus. Mol Neurobiol. doi:10.1007/s12035-016-0344-y

  • Udo H, Hamasu K, Furuse M, Sugiyama H (2014) VEGF-induced antidepressant effects involve modulation of norepinephrine and serotonin systems. Behav Brain Res 275:107–113

    Article  CAS  PubMed  Google Scholar 

  • Uysal N, Kiray M, Sisman AR, Camsari UM, Gencoglu C, Baykara B, Cetinkaya C, Aksu I (2015) Effects of voluntary and involuntary exercise on cognitive functions, and VEGF and BDNF levels in adolescent rats. Biotechnic & histochemistry: official publication of the Biological Stain Commission 90(1):55–68

    Article  CAS  Google Scholar 

  • Valtorta F, Pozzi D, Benfenati F, Fornasiero EF (2011) The synapsins: multitask modulators of neuronal development. Semin Cell Dev Biol 22(4):378–386

    Article  CAS  PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2003) Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122(3):647–657

    Article  CAS  PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004a) Exercise induces BDNF and synapsin I to specific hippocampal subfields. J Neurosci Res 76(3):356–362

    Article  CAS  PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004b) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20(10):2580–2590

    Article  PubMed  Google Scholar 

  • Yang D, Chen M, Russo-Neustadt A (2012) Antidepressants are neuroprotective against nutrient deprivation stress in rat hippocampal neurons. Eur J Neurosci 36(5):2573–2587

    Article  PubMed  Google Scholar 

  • Yau SY, Gil-Mohapel J, Christie BR, So KF (2014) Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? Biomed Res Int 2014:403120

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin JC, Del Vecchio M, Zhou H, Tully T (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. The Journal of neuroscience: the official journal of the Society for Neuroscience 12(12):4793–4799

    CAS  Google Scholar 

  • Zhang N, Xing M, Wang Y, Tao H, Cheng Y (2015) Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience 311:284–291

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Zhou X, Moon C, Wang H (2012) Regulation of brain-derived neurotrophic factor expression in neurons. International journal of physiology, pathophysiology and pharmacology 4(4):188–200

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lundbeck Foundation (R100-A9606).

Author information

Authors and Affiliations

Authors

Contributions

CS, FDP, JHC, and ALN conceived and designed the study. CS and TFD performed the biological experiments. YL guided the implementation of CRISPR-dCas9 technology. CS analyzed the results for rat hippocampi and TFD and ALN analyzed the results for CRISPR-dCas9 experiments. CS and ALN drafted the manuscript and all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Anders L. Nielsen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solvsten, C.A.E., Daugaard, T.F., Luo, Y. et al. The Effects of Voluntary Physical Exercise-Activated Neurotrophic Signaling in Rat Hippocampus on mRNA Levels of Downstream Signaling Molecules. J Mol Neurosci 62, 142–153 (2017). https://doi.org/10.1007/s12031-017-0918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0918-9

Keywords

Navigation