Skip to main content

Advertisement

Log in

Transactivation Domain of Human c-Myc Is Essential to Alleviate Poly(Q)-Mediated Neurotoxicity in Drosophila Disease Models

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Polyglutamine (poly(Q)) disorders, such as Huntington’s disease (HD) and spinocerebellar ataxias, represent a group of neurological disorders which arise due to an atypically expanded poly(Q) tract in the coding region of the affected gene. Pathogenesis of these disorders inside the cells begins with the assembly of these mutant proteins in the form of insoluble inclusion bodies (IBs), which progressively sequester several vital cellular transcription factors and other essential proteins, and finally leads to neuronal dysfunction and apoptosis. We have shown earlier that targeted upregulation of Drosophila myc (dmyc) dominantly suppresses the poly(Q) toxicity in Drosophila. The present study examines the ability of the human c-myc proto-oncogene and also identifies the specific c-Myc isoform which drives the mitigation of poly(Q)-mediated neurotoxicity, so that it could be further substantiated as a potential drug target. We report for the first time that similar to dmyc, tissue-specific induced expression of human c-myc also suppresses poly(Q)-mediated neurotoxicity by an analogous mechanism. Among the three isoforms of c-Myc, the rescue potential was maximally manifested by the full-length c-Myc2 protein, followed by c-Myc1, but not by c-MycS which lacks the transactivation domain. Our study suggests that strategies focussing on the transactivation domain of c-Myc could be a very useful approach to design novel drug molecules against poly(Q) disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benassayag C, Montero L, Colombié N, Gallant P, Cribbs D, Morello D (2005) Human c-Myc isoforms differentially regulate cell growth and apoptosis in Drosophila melanogaster. Mol Cell Biol 25:9897–9909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonini NM (1999) A genetic model for human polyglutamine-repeat disease in Drosophila melanogaster. Philos Trans R Soc Lond Ser B Biol Sci 354:1057–1060

    Article  CAS  Google Scholar 

  • Brehme M, Voisine C (2016) Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis Model Mech 9:823–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai Y, Koppenhafer SL, Bonini NM, Paulson HL (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine diseases. J Neurosci 19:10338–10347

    CAS  PubMed  Google Scholar 

  • Chan HY, Warrick JM, Andriola I, Merry D, Bonini NM (2002) Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet 11:2895–2904

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Berthelier V, Yang W, Wetzel R (2001) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 311:173–182

    Article  CAS  PubMed  Google Scholar 

  • Claassen GF, Hann SR (1999) Myc-mediated transformation: the repression connection. Oncogene 18:2925–2933

    Article  CAS  PubMed  Google Scholar 

  • Cole MD, McMahon SB (1999) The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18:2916–2924

    Article  CAS  PubMed  Google Scholar 

  • Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett CM, Wood NW (2004) Trinucleotide repeats and neurodegenerative disease. Brain 127:2385–2405

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I, Blanco R (2000) N-myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. Brain Res Mol Brain Res 77:270–276

    Article  CAS  PubMed  Google Scholar 

  • Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120:2121–2129

    CAS  PubMed  Google Scholar 

  • Henriksson M, Luscher B (1996) Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 68:109–182

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Yamagishi N, Saito Y, Adachi H, Kobayashi Y, Sobue G, Ohtsuka K, Hatayama T (2003) Hsp105α suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J Biol Chem 278:25143–25150

    Article  CAS  PubMed  Google Scholar 

  • Jana NR, Tanaka M, Wang G, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and HSp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9:2009–2018

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G (2000) Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 275:8772–8778

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion downregulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3:157–163

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Vogel H (2009) Drosophila models of neurodegenerative diseases. Annu Rev Pathol 4:315–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer N, Penn LZ (2008) Reflecting on 25 years of Myc. Nat Rev Cancer 8:976–990

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Bessa C, Soares J, Leao M, Saraiva L (2012) Contribution of yeast models to neurodegeneration research. J Biomed Biotechnol. doi:10.1155/2012/941232

    PubMed  PubMed Central  Google Scholar 

  • Quinn WG, Harris WA, Benzer S (1974) Conditioned behaviour in Drosophila eyes. Proc Natl Acad Sci U S A 71:708–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamuro D, Prendergast GC (1999) New Myc-interacting proteins: a second Myc network emerges. Oncogene 18:2942–2954

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Diamond MI (2007) Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 16:R115–R123

    Article  CAS  PubMed  Google Scholar 

  • Singh MD, Raj K, Sarkar S (2014) Drosophila Myc, a novel modifier suppresses the poly(Q) toxicity by modulating the level of CREB binding protein and histone acetylation. Neurobiol Dis 63:48–61

    Article  CAS  PubMed  Google Scholar 

  • Steinert JR, Campesan S, Richards P, Kyriacou CP, Forsythe ID, Giorgini F (2012) Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington’s disease. Hum Mol Genet 21:2912–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teschendorf D, Link CD (2009) What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener 4:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    Article  CAS  PubMed  Google Scholar 

  • Weiss KR, Kimura Y, Lee WC, Littleton JT (2012) Huntingtin aggregation kinetics and their pathological role in Drosophila Huntington’s disease model. Genetics 190:581–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Q, Claassen G, Shi J, Adachi S, Sedivy J, Hann SR (1998) Transactivation-defective c-MycS retains the ability to regulate proliferation and apoptosis. Genes Dev 12:3803–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. J. Troy Littleton (MIT, USA) and Prof. Benassayag (Université Paul Sabatier, Toulouse, France) for providing some fly stocks utilised in this study. We also thank Bloomington Stock Center, Indiana, USA, for fly stocks. This work was supported by a research grant (Ref. no. BT/PR4937/MED/30/727/2012) from the Department of Biotechnology (DBT), Government of India, New Delhi, to S.S. KR is supported by the Senior Research Fellowship (SRF) from University Grant Commission (UGC), New Delhi. We also thank Delhi University for the financial support under R&D and DU/DST-PURSE schemes. The financial support to the department under DSTFIST(L2) is thankfully acknowledged. We are grateful to Ms. Nabanita Sarkar and Ms. Soram Idiyasan Chanu for the technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, K., Sarkar, S. Transactivation Domain of Human c-Myc Is Essential to Alleviate Poly(Q)-Mediated Neurotoxicity in Drosophila Disease Models. J Mol Neurosci 62, 55–66 (2017). https://doi.org/10.1007/s12031-017-0910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0910-4

Keywords

Navigation