Skip to main content

Aberrant Alterations of Mitochondrial Factors Drp1 and Opa1 in the Brains of Scrapie Experiment Rodents

Abstract

The abnormal mitochondrial dynamics has been reported in the brains of some neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), but limitedly described in prion disease. Dynamin-related protein 1 (Drpl) and optic atrophy protein 1 (Opa1) are two essential elements for mitochondria fission and fusion. To evaluate possible changes of mitochondria dynamics during prion infection, the situations of brain Drp1 and Opa1 of scrapie strains 139A, ME7, and S15 mice, as well as 263K-infected hamsters, were analyzed. Significant decreases of brain Drp1 were observed in scrapie-infected rodents at terminal stage by Western blots and immunohistochemical assays, while the levels of Opa1 also showed declined tendency in the brains of scrapie-infected rodents. Immunofluorescent assays illustrated well localization of Drp1 or Opa1 within NeuN-positive cells. Moreover, the S-nitrosylated forms of Drp1significantly increased in the brain tissues of 139A- and ME7-infected mice at terminal stage. Dynamic analysis of Drp1 and SNO-Dpr1 in the brains collected at different time points within the incubation period of 139A-infected mice demonstrated that the whole Drp1 decreased at all tested samples, whereas the SNO-Drp1 remarkably increased in the sample of 90-day post-infection (dpi), reached to the peak in that of 120 dpi and dropped down but still maintained at higher level at the end of disease. The levels of apoptotic factors cleaved caspase 9, caspase 3, and Bax were also markedly increased in the brain tissues of the mice infected with agents 139A and ME7. Our data indicate a disorder of mitochondria dynamics in the brains of prion infection, largely depending on the abnormal alteration of brain Drp1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Benard G, Karbowski M (2009) Mitochondrial fusion and division: regulation and role in cell viability. Semin Cell Dev Biol 20:365–374

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Birkett CR, Hennion RM, Bembridge DA, Clarke MC, Chree A et al (2001) Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. EMBO J 20:3351–3358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Cerveny KL, Tamura Y, Zhang Z, Jensen RE, Sesaki H (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563–569

    CAS  Article  PubMed  Google Scholar 

  4. Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201:34–39

    CAS  Article  PubMed  Google Scholar 

  5. Chen LN, Shi Q, Zhang XM, Zhang BY, Lv Y et al (2015a) Optimization of the isolation and enrichment of S-nitrosylated proteins from brain tissues of rodents and humans with various prion diseases for iTRAQ-based proteomics. Int J Mol Med 35:125–134

    CAS  PubMed  Google Scholar 

  6. Chen LN, Shi Q, Zhang BY, Zhang XM, Wang J, et al. (2015b) Proteomic analyses for the global S-nitrosylated proteins in the brain tissues of different human prion diseases. Mol Neurobiol

  7. Chen LN, Sun J, Yang XD, Xiao K, Lv Y, et al. (2016) The brain NO levels and NOS activities ascended in the early and middle stages and descended in the terminal stage in scrapie-infected animal models. Mol Neurobiol.

  8. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A et al (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Cho B, Choi SY, Cho HM, Kim HJ, Sun W (2013) Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp Neurobiol 22:149–157

    Article  PubMed  PubMed Central  Google Scholar 

  10. Choi HS, Choi YG, Shin HY, Oh JM, Park JH et al (2014) Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice. Biochem Biophys Res Commun 448:157–162

    CAS  Article  PubMed  Google Scholar 

  11. Clarke MC, Haig DA (1970) Multiplication of scrapie agent in cell culture. Res Vet Sci 11:500–501

    CAS  PubMed  Google Scholar 

  12. DeArmond SJ (2004) Discovering the mechanisms of neurodegeneration in prion diseases. Neurochem Res 29:1979–1998

    CAS  Article  PubMed  Google Scholar 

  13. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A 105:14503–14508

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fairbairn DW, Carnahan KG, Thwaits RN, Grigsby RV, Holyoak GR et al (1994) Detection of apoptosis induced DNA cleavage in scrapie-infected sheep brain. FEMS Microbiol Lett 115:341–346

    CAS  Article  PubMed  Google Scholar 

  15. Ferrer I (1999) Nuclear DNA fragmentation in Creutzfeldt-Jakob disease: does a mere positive in situ nuclear end-labeling indicate apoptosis? Acta Neuropathol 97:5–12

    CAS  Article  PubMed  Google Scholar 

  16. Gelpi E, Kovacs GG, Strobel T, Koperek O, Voigtlander T et al (2005) Prion disease with a 144 base pair insertion: unusual cerebellar prion protein immunoreactivity. Acta Neuropathol 110:513–519

    CAS  Article  PubMed  Google Scholar 

  17. Guizzunti G, Zurzolo C (2015) Cytosolically expressed PrP GPI-signal peptide interacts with mitochondria. Commun Integr Biol 8:e1036206

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    CAS  Article  PubMed  Google Scholar 

  19. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    CAS  Article  PubMed  Google Scholar 

  20. Hudson G, Amati-Bonneau P, Blakely EL, Stewart JD, He L et al (2008) Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131:329–337

    Article  PubMed  Google Scholar 

  21. Jesionek-Kupnicka D, Buczynski J, Kordek R, Sobow T, Kloszewska I et al (1997) Programmed cell death (apoptosis) in Alzheimer’s disease and Creutzfeldt-Jakob disease. Folia Neuropathol 35:233–235

    CAS  PubMed  Google Scholar 

  22. Jesionek-Kupnicka D, Buczynski J, Kordek R, Liberski PP (1999) Neuronal loss and apoptosis in experimental Creutzfeldt-Jakob disease in mice. Folia Neuropathol 37:283–286

    CAS  PubMed  Google Scholar 

  23. Liberski PP (2012) Historical overview of prion diseases: a view from afar. Folia Neuropathol 50:1–12

    CAS  PubMed  Google Scholar 

  24. Ligon LA, Steward O (2000) Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol 427:340–350

    CAS  Article  PubMed  Google Scholar 

  25. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S et al (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127:383–395

    CAS  Article  PubMed  Google Scholar 

  27. Middlemore-Risher ML, Adam BL, Lambert NA, Terry AV Jr (2011) Effects of chlorpyrifos and chlorpyrifos-oxon on the dynamics and movement of mitochondria in rat cortical neurons. J Pharmacol Exp Ther 339:341–349

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S et al (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Pan B, Yang L, Wang J, Wang Y, Zhou X et al (2014) C-Abl tyrosine kinase mediates neurotoxic prion peptide-induced neuronal apoptosis via regulating mitochondrial homeostasis. Mol Neurobiol 49:1102–1116

    CAS  Article  PubMed  Google Scholar 

  30. Park JH, Kim BH, Park SJ, Jin JK, Jeon YC et al (2011) Association of endothelial nitric oxide synthase and mitochondrial dysfunction in the hippocampus of scrapie-infected mice. Hippocampus 21:319–333

    CAS  Article  PubMed  Google Scholar 

  31. Shi Q, Zhang BY, Gao C, Zhang J, Jiang HY et al (2012) Mouse-adapted scrapie strains 139A and ME7 overcome species barrier to induce experimental scrapie in hamsters and changed their pathogenic features. Virol J 9:63

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shi Q, Song QQ, Sun P, Zhang J, Song J et al (2014) Infection of prions and treatment of PrP106-126 alter the endogenous status of protein 14-3-3 and trigger the mitochondrial apoptosis possibly via activating Bax pathway. Mol Neurobiol 49:840–851

    CAS  Article  PubMed  Google Scholar 

  33. Shi Q, Xiao K, Zhang BY, Zhang XM, Chen LN et al (2015a) Successive passaging of the scrapie strains, ME7-ha and 139A-ha, generated by the interspecies transmission of mouse-adapted strains into hamsters markedly shortens the incubation times, but maintains their molecular and pathological properties. Int J Mol Med 35:1138–1146

    CAS  PubMed  Google Scholar 

  34. Shi Q, Chen LN, Zhang BY, Xiao K, Zhou W et al (2015b) Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics 14:854–869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Siskova Z, Mahad DJ, Pudney C, Campbell G, Cadogan M et al (2010) Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease. Am J Pathol 177:1411–1421

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525–3532

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106:675–683

    CAS  Article  PubMed  Google Scholar 

  38. Theil D, Fatzer R, Meyer R, Schobesberger M, Zurbriggen A et al (1999) Nuclear DNA fragmentation and immune reactivity in bovine spongiform encephalopathy. J Comp Pathol 121:357–367

    CAS  Article  PubMed  Google Scholar 

  39. Wang SB, Shi Q, Xu Y, Xie WL, Zhang J et al (2012) Protein disulfide isomerase regulates endoplasmic reticulum stress and the apoptotic process during prion infection and PrP mutant-induced cytotoxicity. PLoS One 7:e38221

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Wang H, Tian C, Fan XY, Chen LN, Lv Y et al (2015) Polo-like kinase 3 (PLK3) mediates the clearance of the accumulated PrP mutants transiently expressed in cultured cells and pathogenic PrP(Sc) in prion infected cell line via protein interaction. Int J Biochem Cell Biol 62:24–35

    Article  PubMed  Google Scholar 

  41. Williams A, Lucassen PJ, Ritchie D, Bruce M (1997) PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144:433–438

    CAS  Article  PubMed  Google Scholar 

  42. Xiao K, Zhang BY, Zhang XM, Wang J, Chen C, et al. (2016) Re-infection of the prion from the scrapie infected cell line SMB-S15 in three strains of mice, CD1, C57BL/6 and Balb/c. Int J Mol Med

  43. Xu K, Wang X, Shi Q, Chen C, Tian C et al (2011) Human prion protein mutants with deleted and inserted octarepeats undergo different pathways to trigger cell apoptosis. J Mol Neurosci 43:225–234

    CAS  Article  PubMed  Google Scholar 

  44. Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y et al (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 101:10810–10814

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese National Natural Science Foundation grants (81301429, 81572048, and 81630062), National Key Research and Development Plan (2016YFC1202700), and SKLID Development grant (2012SKLID102, 2015SKLID503, and 2016SKLID603).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qi Shi or Xiao-Ping Dong.

Additional information

Xiao-Dong Yang and Qi Shi contributed equally to this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X.D., Shi, Q., Sun, J. et al. Aberrant Alterations of Mitochondrial Factors Drp1 and Opa1 in the Brains of Scrapie Experiment Rodents. J Mol Neurosci 61, 368–378 (2017). https://doi.org/10.1007/s12031-016-0866-9

Download citation

Keywords

  • Scrapie
  • Mitochondria dynamics
  • Drp1
  • Opa1
  • Apoptosis