Skip to main content

Advertisement

Log in

Delivery of Fluorescent Nanoparticles to the Brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nanotechnology applications in neuroscience promises to deliver significant scientific and technological breakthroughs, providing answers to unresolved questions regarding the processes occurring in the brain. In this perspective, we provide a short background on two distinct fluorescent nanoparticles and summarize several studies focussed on achieving delivery of these into the brain and their interaction with brain tissue. Furthermore, we discuss challenges and opportunities for further development of nanoparticle-based therapies for targeting delivery of drugs across the blood-brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott NJ (2013) Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449. doi:10.1007/s10545-013-9608-0

    Article  CAS  PubMed  Google Scholar 

  • Aharonovich I, Greentree AD, Prawer S (2011) Diamond photonics Nat Photon 5:397–405

    Article  CAS  Google Scholar 

  • Alawdi SH, El-Denshary ES, Safar MM, Eidi H, David M-O, Abdel-Wahhab MA (2016) Neuroprotective effect of nanodiamond in Alzheimer’s disease rat model: a pivotal role for modulating NF-κB and STAT3 signaling molecular neurobiology:1–13

  • Aramesh M et al. (2015a) Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids. Nanoscale 7:5998–6006

    Article  CAS  PubMed  Google Scholar 

  • Aramesh M, Shimoni O, Ostrikov K, Prawer S, Cervenka J (2015b) Surface charge effects in protein adsorption on nanodiamonds. Nanoscale 7:5726–5736

  • Banks WA (2016) From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15:275–292

    Article  CAS  PubMed  Google Scholar 

  • Chang H-C (2010) Development and use of fluorescent nanodiamonds as cellular markers. In: Nanodiamonds. Springer, pp 127–150

  • Chang IP, Hwang KC, Ho J-aA, Lin C-C, Hwu RJR, Horng J-C (2010) Facile surface functionalization of nanodiamonds. Langmuir 26:3685–3689

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574

    Article  CAS  PubMed  Google Scholar 

  • Eidi H et al. (2015) Fluorescent nanodiamonds as a relevant tag for the assessment of alum adjuvant particle biodisposition. BMC medicine 13:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu C-C et al. (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci 104:727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Li M, Dong K, Ren J, Qu X (2014) NIR-responsive upconversion nanoparticles stimulate neurite outgrowth in PC12. Cells Small 10:3655–3661

    Article  CAS  PubMed  Google Scholar 

  • Hsu T-C, Liu K-K, Chang H-C, Hwang E, Chao J-I (2014) Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. Scientific Reports 4:5004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y-A et al. (2014) The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Scientific Reports 4:6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain KK (2012) Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (London, England) 7:1225–1233

    Article  CAS  Google Scholar 

  • Jin JF, Xu ZH, Zhang Y, Gu YJ, Lam MHW, Wong WT (2013) Upconversion nanoparticles conjugated with Gd3 + −DOTA and RGD for targeted dual-modality imaging of brain tumor xenografts. Adv Healthc Mater 2:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Khan Z et al. (2013) Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC medicine 11:1–18

    Article  Google Scholar 

  • Krueger A, Lang D (2012) Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater 22:890–906

    Article  CAS  Google Scholar 

  • Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394

    Article  CAS  PubMed  Google Scholar 

  • Liu K-K, Cheng C-L, Chang C-C, Chao JI (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18:325102

    Article  Google Scholar 

  • Liu C-C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y et al. (2014) Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photon 8:32–36

    Article  CAS  Google Scholar 

  • McGuinness LP et al. (2011) Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nano 6:358–363

    Article  CAS  Google Scholar 

  • Meinhardt T, Lang D, Dill H, Krueger A (2011) Pushing the functionality of diamond nanoparticles to new horizons: orthogonally functionalized nanodiamond using click chemistry. Adv Funct Mater 21:494–500

    Article  CAS  Google Scholar 

  • Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nano 7:11–23

    Article  CAS  Google Scholar 

  • Ni DL et al. (2014a) Single Ho3 + −doped upconversion nanoparticles for high-performance T-2-weighted brain tumor diagnosis and MR/UCL/CT multimodal imaging. Adv Funct Mater 24:6613–6620

    Article  CAS  Google Scholar 

  • Ni DL et al. (2014b) Dual-targeting upconversion Nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano 8:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Peng J et al. (2015) High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J Am Chem Soc 137:2336–2342

    Article  CAS  PubMed  Google Scholar 

  • Slegerova J, Hajek M, Rehor I, Sedlak F, Stursa J, Hruby M, Cigler P (2015) Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. Nanoscale 7:415–420

    Article  CAS  PubMed  Google Scholar 

  • Tong W et al. (2014) Fabrication of planarised conductively patterned diamond for bio-applications. Mater Sci Eng C 43:135–144

    Article  CAS  Google Scholar 

  • Vial S et al. (2008) Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. Chembiochem 9:2113–2119

    Article  CAS  PubMed  Google Scholar 

  • Weiss N, Miller F, Cazaubon S, Couraud P-O (2009) The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta Biomembr 1788:842–857

    Article  CAS  Google Scholar 

  • Xi G et al. (2013) Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine: Nanotechnology, Biology and Medicine 10:381–391

    Google Scholar 

  • Yokel RA (2016) Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. Nanomedicine: Nanotechnology, Biology and Medicine 12:2081–2093

    CAS  Google Scholar 

  • Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605

    Article  CAS  PubMed  Google Scholar 

  • Zhang T-T, Li W, Meng G, Wang P, Liao W (2016) Strategies for transporting nanoparticles across the blood-brain barrier. Biomaterials Science 4:219–229

    Article  CAS  PubMed  Google Scholar 

  • Zhao J et al. (2013) Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 8:729–734

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Shi B, Jin D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nano 10:924–936

    Article  CAS  Google Scholar 

Download references

Acknowledgments

O.S. and B.S. are the recipients of an NHMRC-ARC Dementia Research Fellowships (APP1101258 and APP1111611). The Florey Institute of Neuroscience and Mental Health acknowledge the strong support from the Victorian Government and in particular the funding from the Operational Infrastructure Support Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Shimoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimoni, O., Shi, B., Adlard, P.A. et al. Delivery of Fluorescent Nanoparticles to the Brain. J Mol Neurosci 60, 405–409 (2016). https://doi.org/10.1007/s12031-016-0833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0833-5

Keywords

Navigation