Skip to main content

Advertisement

Log in

Neuroserpin Attenuates H2O2-Induced Oxidative Stress in Hippocampal Neurons via AKT and BCL-2 Signaling Pathways

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Oxidative stress plays a critical role in neuronal injury and is associated with various neurological diseases. Here, we explored the potential protective effect of neuroserpin against oxidative stress in primary cultured hippocampal neurons. Our results show that neuroserpin inhibits H2O2-induced neurotoxicity in hippocampal cultures as measured by WST, LDH release, and TUNEL assays. We found that neuroserpin enhanced the activation of AKT in cultures subjected to oxidative stress and that the AKT inhibitor Ly294002 blocked this neuroprotective effect. Neuroserpin increased the expression of the anti-apoptotic protein BCL-2 and blocked the activation of caspase-3. Neuroserpin did not increase the level of neuroprotection over levels seen in neurons transduced with a BCL-2 expression vector, and an inhibitor of Trk receptors, K252a, did not block neuroserpin’s effect. Taken together, our study demonstrates that neuroserpin protects against oxidative stress-induced dysfunction and death of primary cultured hippocampal neurons through the AKT-BCL-2 signaling pathway through a mechanism that does not involve the Trk receptors and leads to inhibition of caspase-3 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bacskai BJ, Xia MQ, Strickland DK, Rebeck GW, Hyman BT (2000) The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A 97:11551–11556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827.

    Article  CAS  PubMed  Google Scholar 

  • Berger P, Kozlov SV, Cinelli P, Kruger SR, Vogt L, Sonderegger P (1999) Neuronal depolarization enhances the transcription of the neuronal serine protease inhibitor neuroserpin. Mol Cell Neurosci 14:455–467.

    Article  CAS  PubMed  Google Scholar 

  • Borges VM, Lee TW, Christie DL, Birch NP (2010) Neuroserpin regulates the density of dendritic protrusions and dendritic spine shape in cultured hippocampal neurons. J Neurosci Res 88:2610–2617.

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Boyd-Kimball D (2004) Amyloid beta-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol 14:426–432.

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Cawley NX, Loh YP (2013) Carboxypeptidase E/NFalpha1: a new neurotrophic factor against oxidative stress-induced apoptotic cell death mediated by ERK and PI3-K/AKT pathways. PLoS One 8:e71578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Rodriguiz RM, Murthy SR, Senatorov V, Thouennon E, Cawley NX, Aryal DK, Ahn S, Lecka-Czernik B, Wetsel WC, Loh YP (2015) Neurotrophic factor-alpha1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone. Mol Psychiatry 20:744–754

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Park HH, Koh SH, Choi NY, Yu HJ, Park J, Lee YJ, Lee KY (2012) Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. Neurotoxicology 33:85–90.

    Article  CAS  PubMed  Google Scholar 

  • Cinelli P, Madani R, Tsuzuki N, Vallet P, Arras M, Zhao CN, Osterwalder T, Rulicke T, Sonderegger P (2001) Neuroserpin, a neuroprotective factor in focal ischemic stroke. Mol Cell Neurosci 18:443–457

    Article  CAS  PubMed  Google Scholar 

  • de la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 9:167–181.

    PubMed  Google Scholar 

  • Duarte AI, Santos P, Oliveira CR, Santos MS, Rego AC (2008) Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3beta signaling pathways and changes in protein expression. Biochim Biophys Acta 1783:994–1002.

    Article  CAS  PubMed  Google Scholar 

  • Fabbro S, Schaller K, Seeds NW (2011) Amyloid-beta levels are significantly reduced and spatial memory defects are rescued in a novel neuroserpin-deficient Alzheimer’s disease transgenic mouse model. J Neurochem 118:928–938.

    Article  CAS  PubMed  Google Scholar 

  • Fabbro S, Seeds NW (2009) Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J Neurochem 109:303–315.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi, S., Abramov, A.Y., 2012. Mechanism of oxidative stress in neurodegeneration. Oxidative Medicine and Cellular Longevity, Article ID 428010.

  • Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433.

    Article  CAS  PubMed  Google Scholar 

  • Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, Waterfield MD (2007) Exploring the specificity of the PI3K family inhibitor LY294002. The Biochemical Journal 404:15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings GA, Coleman TA, Haudenschild CC, Stefansson S, Smith EP, Barthlow R, Cherry S, Sandkvist M, Lawrence DA (1997) Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival The Journal of Biological Chemistry 272:33062–33067.

    CAS  PubMed  Google Scholar 

  • Hayashi H, Campenot RB, Vance DE, Vance JE (2007) Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J Neurosci 27:1933–1941.

    Article  CAS  PubMed  Google Scholar 

  • Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RM, Parmar PK, Coates LC, Mezey E, Pearson JF, Birch NP (2000) Neuroserpin is expressed in the pituitary and adrenal glands and induces the extension of neurite-like processes in AtT-20 cells. The Biochemical Journal 345:595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu K, Yang J, Tanaka S, Gonias SL, Mars WM, Liu Y (2006) Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J Biol Chem 281:2120–2127.

    Article  CAS  PubMed  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Casadesus G, Fisher D (2005) Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem Res 30:927–935.

    Article  CAS  PubMed  Google Scholar 

  • Kinghorn KJ, Crowther DC, Sharp LK, Nerelius C, Davis RL, Chang HT, Green C, Gubb DC, Johansson J, Lomas DA (2006) Neuroserpin binds Abeta and is a neuroprotective component of amyloid plaques in Alzheimer disease. J Biol Chem 281:29268–29277.

    Article  CAS  PubMed  Google Scholar 

  • Krueger SR, Ghisu GP, Cinelli P, Gschwend TP, Osterwalder T, Wolfer DP, Sonderegger P (1997) Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse. J Neurosci 17:8984–8996.

    CAS  PubMed  Google Scholar 

  • Lebeurrier N, Liot G, Lopez-Atalaya JP, Orset C, Fernandez-Monreal M, Sonderegger P, Ali C, Vivien D (2005) The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Mol Cell Neurosci 30:552–558.

    Article  CAS  PubMed  Google Scholar 

  • Lee TW, Coates LC, Birch NP (2008) Neuroserpin regulates N-cadherin-mediated cell adhesion independently of its activity as an inhibitor of tissue plasminogen activator. J Neurosci Res 86:1243–1253.

    Article  CAS  PubMed  Google Scholar 

  • Lee TW, Tsang VW, Birch NP (2015) Physiological and pathological roles of tissue plasminogen activator and its inhibitor neuroserpin in the nervous system. Front Cell Neurosci 9:396.

    PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Park KH, Park HH, Kim YJ, Lee KY, Kim SH, Koh SH (2009) Cilnidipine mediates a neuroprotective effect by scavenging free radicals and activating the phosphatidylinositol 3-kinase pathway. J Neurochem 111:90–100.

    Article  CAS  PubMed  Google Scholar 

  • Li J, O W, Li W, Jiang ZG, Ghanbari HA (2013) Oxidative stress and neurodegenerative disorders. Int J Mol Sci 14:24438–24475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Tong Y, Yu D, Mao M (2012) Tissue plasminogen activator-independent roles of neuroserpin in the central nervous system. Neural Regeneration Research 7:146–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madani R, Kozlov S, Akhmedov A, Cinelli P, Kinter J, Lipp HP, Sonderegger P, Wolfer DP (2003) Impaired explorative behavior and neophobia in genetically modified mice lacking or overexpressing the extracellular serine protease inhibitor neuroserpin. Mol Cell Neurosci 23:473–494.

    Article  CAS  PubMed  Google Scholar 

  • Makarova A, Mikhailenko I, Bugge TH, List K, Lawrence DA, Strickland DK (2003) The low density lipoprotein receptor-related protein modulates protease activity in the brain by mediating the cellular internalization of both neuroserpin and neuroserpin-tissue-type plasminogen activator complexes. J Biol Chem 278:50250–50258.

    Article  CAS  PubMed  Google Scholar 

  • Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123.

    Article  CAS  PubMed  Google Scholar 

  • Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008a) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of Schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28:11571–11582.

    Article  CAS  PubMed  Google Scholar 

  • Mantuano E, Mukandala G, Li X, Campana WM, Gonias SL (2008b) Molecular dissection of the human alpha2-macroglobulin subunit reveals domains with antagonistic activities in cell signaling. J Biol Chem 283:19904–19911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo A, Monteiro L, Lima RM, Oliveira DM, Cerqueira MD, El-Bacha RS (2011) Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxidative Med Cell Longev 2011:467180.

    Article  Google Scholar 

  • Miranda E, Lomas DA (2006) Neuroserpin: a serpin to think about. Cell Mol Life Sci 63:709–722.

    Article  CAS  PubMed  Google Scholar 

  • Mohsenifar A, Lotfi AS, Ranjbar B, Allameh A, Zaker F, Hasani L, Kia BE, Hasannia S (2007) A study of the oxidation-induced conformational and functional changes in neuroserpin. Iran Biomed J 11:41–46.

    CAS  PubMed  Google Scholar 

  • Navarro-Yubero C, Cuadrado A, Sonderegger P, Munoz A (2004) Neuroserpin is post-transcriptionally regulated by thyroid hormone. Brain research. Mol Brain Res 123:56–65.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HM, Minthon L, Londos E, Blennow K, Miranda E, Perez J, Crowther DC, Lomas DA, Janciauskiene SM (2007) Plasma and CSF serpins in Alzheimer disease and dementia with Lewy bodies. Neurology 69:1569–1579.

    Article  CAS  PubMed  Google Scholar 

  • Osterwalder T, Cinelli P, Baici A, Pennella A, Krueger SR, Schrimpf SP, Meins M, Sonderegger P (1998) The axonally secreted serine proteinase inhibitor, neuroserpin, inhibits plasminogen activators and plasmin but not thrombin. J Biol Chem 273:2312–2321.

    Article  CAS  PubMed  Google Scholar 

  • Osterwalder T, Contartese J, Stoeckli ET, Kuhn TB, Sonderegger P (1996) Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J 15:2944–2953.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar PK, Coates LC, Pearson JF, Hill RM, Birch NP (2002) Neuroserpin regulates neurite outgrowth in nerve growth factor-treated PC12 cells. J Neurochem 82:1406–1415.

    Article  CAS  PubMed  Google Scholar 

  • Qin XY, Cheng Y, Murthy SR, Selvaraj P, Loh YP (2014) Carboxypeptidase E-DeltaN, a neuroprotein transiently expressed during development protects embryonic neurons against glutamate neurotoxicity. PLoS One 9:e112996.

    Article  PubMed  PubMed Central  Google Scholar 

  • Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42(Suppl 3):S125–S152.

    PubMed  Google Scholar 

  • Robinson SD, Lee TW, Christie DL, Birch NP (2015) Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons. Front Cell Neurosci 9:404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Q, Gibson GE (2007) Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord 21:276–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y., Mantuano, E., Inoue, G., Campana, W.M., Gonias, S.L., 2009. Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway. Science Signaling 2, ra18.

  • Stoeckli ET, Lemkin PF, Kuhn TB, Ruegg MA, Heller M, Sonderegger P (1989) Identification of proteins secreted from axons of embryonic dorsal-root-ganglia neurons. Eur J Biochem 180:249–258.

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Thomas G, McLendon C, Sutton T, Mullan M (1996) Beta-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380:168–171.

    Article  CAS  PubMed  Google Scholar 

  • Uranga RM, Katz S, Salvador GA (2013) Enhanced phosphatidylinositol 3-kinase (PI3K)/Akt signaling has pleiotropic targets in hippocampal neurons exposed to iron-induced oxidative stress. J Biol Chem 288:19773–19784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang Y, Asakawa T, Ll W, Han S, Ll Q, Xiao B, Namba H, Lu C, Dong Q (2015) Neuroprotective effect of neuroserpin in oxygen-glucose deprivation- and reoxygenation-treated rat astrocytes in vitro. PLoS One 10:1–16

    Google Scholar 

  • Wang S, Chong ZZ, Shang YC, Maiese K (2012) Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Curr Neurovasc Res 9:20–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wannier-Morino P, Rager G, Sonderegger P, Grabs D (2003) Expression of neuroserpin in the visual cortex of the mouse during the developmental critical period. Eur J Neurosci 17:1853–1860.

    Article  PubMed  Google Scholar 

  • Wu J, Echeverry R, Guzman J, Yepes M (2010) Neuroserpin protects neurons from ischemia-induced plasmin-mediated cell death independently of tissue-type plasminogen activator inhibition. Am J Pathol 177:2576–2584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, Lawrence DA (2000) Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96:569–576.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Moheban DB, Conway BR, Bhattacharyya A, Segal RA (2000) Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J Neurosci 20:5671–5678.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao J, Wang J, Jiao X (2010) Brain-derived neurotrophic factor inhibits phenylalanine-induced neuronal apoptosis by preventing RhoA pathway activation. Neurochem Res 35:480–486

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Health and Human Development, National Institutes of Health, USA, and grants from the Auckland Medical Research Foundation and the University of Auckland to NPB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Birch.

Ethics declarations

All animal procedures were approved by the Animal Care and Use Committee, NICHD, NIH.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Loh, Y.P. & Birch, N.P. Neuroserpin Attenuates H2O2-Induced Oxidative Stress in Hippocampal Neurons via AKT and BCL-2 Signaling Pathways. J Mol Neurosci 61, 123–131 (2017). https://doi.org/10.1007/s12031-016-0807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0807-7

Keywords

Navigation