Skip to main content
Log in

Downregulation of KDM4A Suppresses the Survival of Glioma Cells by Promoting Autophagy

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Glioma is the most common type of primary intracranial tumor and has a poor prognosis. It has been reported that lysine-specific demethylase 4A (KDM4A) can promote tumor progression; however, its role in human glioma remains unclear. Western blot and qRT-PCR analyses showed that KDM4A was highly expressed in U87MG and T98G cells. 48 h after transfection with siKDM4A, the protein level of KDM4A was significantly downregulated. The silenced expression of KDM4A in T98G or U87MG cells inhibited cell viability and invasion, and aggravated cell apoptosis. We found that the siKDM4A led to a significant increase in acidic vesicular organelles (AVOs) and upregulated the expression of autophagy-related proteins, including LC3B-phosphatidylethanolamine conjugate, a cytosolic form of LC3B (LC3B-II/LC3B-I) and Beclin 1 in T98G and U87MG cells. Further studies demonstrated that after pretreatment with 3-MA (3 mmol/L) for 48 h, siKDM4A-transfected cells showed a prominent decrease in LC3B-II/LC3B-I and Beclin 1, accompanied by increased viability and invasion and decreased apoptosis. Our results suggest that the inhibition of KDM4A expression might efficiently suppress glioma cell survival by promoting autophagy, providing a promising agent for treating malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

(KDM4A):

Lysine-specific demethylase 4A

(AVOs):

Acidic vesicular organelles

(AO):

Acridine orange

(3-MA):

3-Methyladenine

References

  • Azoulay-Alfaguter I, Elya R, Avrahami L, Katz A, Eldar-Finkelman H (2015) Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene 34:4613–4623

    Article  CAS  PubMed  Google Scholar 

  • Bernard A, Jin M, Gonzalez-Rodriguez P, Fullgrabe J, Delorme-Axford E, Backues SK, Joseph B, Klionsky DJ (2015) Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy. Curr Biol 25:546–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry WL, Shin S, Lightfoot SA, Janknecht R (2012) Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol 41:1701–1706

    CAS  PubMed  Google Scholar 

  • Berry, W.L., 2013. KDM4A and KDM4B Histone Demethylases: Tumor Promoters and Drug Targets. Vol., University of Oklahoma.

  • Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507

    Article  CAS  PubMed  Google Scholar 

  • Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, Pineda CM, Murphy N, Daniels DL, Montagna C, Lewis PW, Glass K, Allis CD, Dyson NJ, Getz G, Whetstine JR (2013) KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell 154:541–555

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Pan H, Li J, Zhong Q, Chen X, Dry SM, Wang CY (2013) Epigenetic activation of AP1 promotes squamous cell carcinoma metastasis. Sci Signal 6(ra28):1–13 S0-15

    PubMed  Google Scholar 

  • Fu LL, Cheng Y, Liu B (2013) Beclin-1: autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol 45:921–924

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Levine B (2010) The Beclin 1 interactome. Curr Opin Cell Biol 22:140–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YL, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS, Aghi MK (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TD, Shin S, Berry WL, Oh S, Janknecht R (2012) The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem 113:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Kogure M, Takawa M, Cho HS, Toyokawa G, Hayashi K, Tsunoda T, Kobayashi T, Daigo Y, Sugiyama M, Atomi Y, Nakamura Y, Hamamoto R (2013) Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G(1)/S transition. Cancer Lett 336:76–84

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  • Li J, Guo G, Hao J, Zhang J, Guo Y, Yu H (2014) The expression and significance of dishevelled in human glioma. J Surg Res 192:509–514

    Article  CAS  PubMed  Google Scholar 

  • Loenarz C, Schofield CJ (2008) Expanding chemical biology of 2-oxoglutarate oxygenases. Nat Chem Biol 4:152–156

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  • Suikki HE, Kujala PM, Tammela TL, van Weerden WM, Vessella RL, Visakorpi T (2010) Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate 70:889–898

    CAS  PubMed  Google Scholar 

  • Wan SY, Zhang R, Wang YY, Cen JN, Zhou J, Yang Y, Jiang F, Chen ZX (2013) [Expression of autophagy related gene Beclin1 in myelodysplastic syndrome patients and its significance]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 21:936–939

    CAS  PubMed  Google Scholar 

  • Wu Y, Wang X, Guo H, Zhang B, Zhang XB, Shi ZJ, Yu L (2013) Synthesis and screening of 3-MA derivatives for autophagy inhibitors. Autophagy 9:595–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Jiang K, Shen M, Qian Y, Peng Y (2015) SIRT2 suppresses non-small cell lung cancer growth by targeting JMJD2A. Biol Chem 396:929–936

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Holowatyj A, Wu J, Liu H, Zhang L, Suzuki T, Yang ZQ (2015) Genetic alterations of KDM4 subfamily and therapeutic effect of novel demethylase inhibitor in breast cancer. Am J Cancer Res 5:1519–1530

    PubMed  PubMed Central  Google Scholar 

  • Yuanchao S, Xunsi Q, Hong C, Wei S (2014) [Epigenetic control of autophagy]. Yi Chuan 36:447–455

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Highlights

1. KDM4A could promote the progression of glioma in vitro.

2. KDM4A inhibited autophagy activity.

3. KDM4A promoted the progression of glioma cells by inhibiting autophagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Fan, X., Ma, C. et al. Downregulation of KDM4A Suppresses the Survival of Glioma Cells by Promoting Autophagy. J Mol Neurosci 60, 137–144 (2016). https://doi.org/10.1007/s12031-016-0796-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0796-6

Keywords

Navigation