Skip to main content

Advertisement

Log in

Environmental Enrichment Mitigates Detrimental Cognitive Effects of Ketogenic Diet in Weanling Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 20 June 2016

Abstract

For decades, the ketogenic diet has been an effective treatment of intractable epilepsy in children. Childhood epilepsy is pharmacoresistant in 25–40 % of patients taking the current prescribed medications. Chronic seizure activity has been linked to deficits in cognitive function and behavioral problems which negatively affect the learning abilities of the child. Recent studies suggest the ketogenic diet (KD), a high fat with low carbohydrate and protein diet, has adverse effects on cognition in weanling rats. The diet reduces circulating glucose levels to where energy metabolism is converted from glycolysis to burning fat and generating ketone bodies which has been suggested as a highly efficient source of energy for the brain. In contrast, when weanling rats are placed in an enriched environment, they exhibit increased spatial learning, memory, and neurogenesis. Thus, this study was done to determine if weanling rats being administered a KD in an environmental enrichment (EE) would still exhibit the negative cognitive effects of the diet previously observed. The present study suggests that an altered environment is capable of reducing the cognitive deficits in weanling rats administered a KD. Learning was improved with an EE. The effect of diet and environment on anxiety and depression suggests a significant reduction in anxiety with enrichment rearing. Interestingly, circulating energy substrate levels were increased in the EE groups along with brain-derived neurotrophic factor despite the least changes in weight gain. In light of numerous studies using KDs that seemingly have adverse effects on cognition, KD-induced reductions in excitotoxic events would not necessarily eliminate that negative aspect of seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angelucci F, DeBartolo P, Gelfo F, et al. (2009) Increased concentrations of nerve growth factor and brain-derived neurotrophic factor in the rat cerebellum after exposure to environmental enrichment. Cerebellum. 8:499–506

    Article  CAS  PubMed  Google Scholar 

  • Baumans V (2005) Environmental enrichment for laboratory rodents and rabbits: requirements of rodents, rabbits and research. Inst Lab Res J 46(2):162–170

    CAS  Google Scholar 

  • Behassan NA, Jan MM (2006) Ketogenic diet update and application. Neurosci (Riyadah) 11:235–240

    Google Scholar 

  • Bexandale S, Heaney D, Thompson PJ, Duncan JS (2010) Cognitive consequences of childhood-onset temporal lobe epilepsy across adult lifespan. Neurology 75:705–711

    Article  Google Scholar 

  • Brenes J, Padilla M, Fornaguera J (2009) A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Behav Brain Res 197:125–137

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Masino SA, Geiger JD (2011) Homeostatic network regulation-a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discovery 7:713–724

    Article  Google Scholar 

  • Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P (2012) Patterns of treatment response in newly diagnosed epilepsy. Neurology 78:1548–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross JH (2009) Ketogenic diet in the management of childhood epilepsy. Indian Pediatr 46:663–664

    PubMed  Google Scholar 

  • Diamond MC (2001) Response of the brain to enrichment. An Acad Bras Cienc 73:211–220

    Article  CAS  PubMed  Google Scholar 

  • Duman CH, Schlesinger L, Russell DS, Duman RS (2008) Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res 1199:148–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faverjon S, Silveira DC, Fu DD, et al. (2002) Beneficial effects of EE following status epilepticus in immature rats. Neurology 59:1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Wee AS, Nick TG (2005) Effect of Keto-acidosis on seizure occurrence in diabetic patients. J Miss State Med Assoc 46:131–133

    CAS  PubMed  Google Scholar 

  • Garriga-Canut M, Schoenike B, Qazi R, et al. (2006) 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387

    Article  CAS  PubMed  Google Scholar 

  • Gasior M, Yankura J, Hartman AL, French A, Rogawski MA (2010) Anticonvulsant and proconvulsant actions of 2-deoxy-D-glucose. Epilepsia 51:1385–1394

    Article  CAS  PubMed  Google Scholar 

  • Graziano AL, Petrosini A, Bartoletti (2003) Automatic recognition of explorative strategies in the Morris water maze. J Neurosci 130:33–44

    Google Scholar 

  • Hackman D, Farah M, Meaney MJ (2010) Socioeconomic status and the brain: mechanistic insight from human and animal research. Nat Rev Neurosci 11:651–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman AL, Gasior M, Vining EP, Rogawski MA (2007) The neuropharmacology of the ketogenic diet. Pediatric Neurol 36:281–292

    Article  Google Scholar 

  • Hendriksen H, Prins J, Olivier B, Oosting RS (2010) Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressant-resistant animal model for PTSD. PLoS One 5:e11943

    Article  PubMed  PubMed Central  Google Scholar 

  • Hori A, Tandon P, Holmes GL, Stafstorm CE (1997) The ketogenic diet: effect on expression kindled seizures and behavior in adult rats. Epilepsia 38:750–758

    Article  CAS  PubMed  Google Scholar 

  • Ickes BR, Pham TR, Sanders LA, et al. (2000) Long-term environmental enrichment leads to regional increase in neurotrophin levels in rat brain. Exp Neurol 164:45–52

    Article  CAS  PubMed  Google Scholar 

  • Iorio R, Assenza G, Tombini M (2014) The deletion of neural autoantibodies in patients with anti-epileptic-drug-resistant epilepsy predicts response to immunotherapy. Eur J Neurol 22:70–78

    Article  PubMed  Google Scholar 

  • Kendler KS (1996) Major depression and generalized anxiety disorder: same genes (partly) different enviorments-revisited. Br J Psych 30:68–75

    Google Scholar 

  • Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates behavior and locomotor activity in mice. EMBO 6:1290–1300

    Article  Google Scholar 

  • Lambrechts DA, Bovens MJ, de la Parra NM, et al. (2013) Ketogenic diet effects on cognition, mood, and psychosocial adjustment in children. Acta Neurol Scand 127:103–108

    Article  CAS  PubMed  Google Scholar 

  • Lapiz MD, Fulford A, Muchimapura S, Mason R, Parker T, Marsden CA (2003) Influnce of postweaning on social isolation in the rat on brain development, conditioned behavior and neurotransmission. Neurosci Behav Physiol 33:13–29

    Article  CAS  PubMed  Google Scholar 

  • Lefevre F, Aronson N (2000) Ketogenic diet for the treatment of refractory epilepsy in children: a systematic review of efficacy. Pediatrics 4:E46

    Article  Google Scholar 

  • Levine JB, Leeder AD, Parekkadean B (2008) Isolation rearing impairs wound healing and is associated with increased locomotion and decreased immediate early gene expression in medial prefrontal cortex of juvenile rats. Neuroscience 151:589–603

    Article  CAS  PubMed  Google Scholar 

  • Lewis MH (2004) Environmental complexity and central nervous system development and function. Ment Retard Dev Disabil Res Rev 10:91–95

    Article  PubMed  Google Scholar 

  • Lyczowski DA, Pfeifer HH, Ghosh S, Thiele EA (2005) Safety and tolerability of the ketogenic diet in pediatric epilepsy: effects of valproate therapy. Epilepsia 46:1533–1538

    Article  Google Scholar 

  • Moncek F, Duncko R, Johansson BB, Jezova D (2004) Effect of environment on stress related systems in rats. J Neuroendocrinol 16:423–431

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Murphy PS, Likehodii SS, Nylen K, Burnham MW (2004) The antidepressant properties of the ketogenic diet. Biol Psychiatry 56:981–983

    Article  CAS  PubMed  Google Scholar 

  • Murphy PS, Likehodii SS, Hatamian M, Burnham WM (2005) Effect of the ketogenic diet on the activity level of wistar rats. Pediatr Res 57:353–357

    Article  CAS  PubMed  Google Scholar 

  • Neal EG, Chaffe H, Schwartz RH, et al. (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomized controlled trial. Lancet Neurol 7:500–506

    Article  PubMed  Google Scholar 

  • NRC (National Research Council) (1996) Guide to care and use of laboratory animals. National Academy Press.

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Depression: a new animal model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  • Pulsifer MB, Gordon JM, Brandt J, Vining EP, Freeman JM (2001) Effects of the ketogenic diet on development and behavior: preliminary report of a prospective study. Dev Med Child Neurol 43:301–306

    Article  CAS  PubMed  Google Scholar 

  • Rios M, Fan G, Fekete C (2001) Conditional depletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrin Soc 15:1748–1757

    Article  CAS  Google Scholar 

  • Simpson JJ, Kelly JP (2011) The impact of environmental enrichment in laboratory rats-Behavioural and neurochemical aspects. Behav Brain Res 222:246–264

    Article  CAS  PubMed  Google Scholar 

  • Snead CO (2004) The ketogenic diet: a cautionary note. Pediatr Res 55:368–369

    Article  PubMed  Google Scholar 

  • Su SW, Cilio MR, Sogawa Y, Silveira DC, Holmes GL, Stafstrom CE (2000) Timing of ketogenic diet initiation in an experimental epilepsy model. Dev Brain Res 125:131–138

    Article  CAS  Google Scholar 

  • Suo C, Lu X, Fang K, et al. (2013) Efficacy and safety of the ketogenic diet in Chinese children. Seizure 3:174–178

    Article  Google Scholar 

  • Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M (2007) Selective deletion of BDNF in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci 27:14265–14274

    Article  CAS  PubMed  Google Scholar 

  • Van Vliet EA, Aronica E, Gorter JA (2014) Role of blood-brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 277:455–473

    Article  PubMed  Google Scholar 

  • Varvel N. H., Jiang J., Dingledine R. (2014) Candidate drug targets for prevention or modification of epilepsy. Annu Rev Pharmacol Toxicol. 25, Epub

  • Vasconcelos MM, Azevedo PM, Esteves L, Brito AR, Olivaes MC, Herdy GV (2004) Ketogenic diet for intractable epilepsy in children and adolescents: [report of six cases]. Rev Med Bras 50:380–385

    Article  Google Scholar 

  • Vizuette AF, de Souza DF, Guerra MC, Batassini C, Dutra MF, Bernardi C, Costa AP, Concalves CA (2013) Brain changes in BDNF and 100B induced by ketogenic diets in wistar rats. Life Sci 92:921–928

    Google Scholar 

  • Wang C, Billington CJ, Levine AS, Kotz CM (2010) Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Res 8:66–77

    Article  Google Scholar 

  • White S (2003) Preclinical development of antiepileptic drugs: past, present, and future directions. Epilepsia 44:2–8

    Article  CAS  PubMed  Google Scholar 

  • Winocur G, Greenwood C (1996) Cognitive impairment in rats fed high-fat diets: a specific effect of saturated fatty-acid intake. Behav Neurosci 110:451–459

    Article  PubMed  Google Scholar 

  • Winocur G, Greenwood C (1999) The effects of high fat diets and environmental influences on cognitive performance in rats. Behav Brain Res 101:153–161

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Goulding EH, Zang K (2003) Nat Neurosci 6:736–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Stafstrom CE, Fu DD, Hu Y, Holmes GL (2004) Detrimental effects of the ketogenic diet on cognitive functions in rats. Pediatr Res 55:498–506

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Gamaro GD, Araujo E, Bassani MG, Perry ML, Dalmaz C, Concalves CA (2005) Nociception and locomotor activity are increased in ketogenic diet fed rats. Physiol Behav 84:421–427

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Butler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scichilone, J.M., Yarraguntla, K., Charalambides, A. et al. Environmental Enrichment Mitigates Detrimental Cognitive Effects of Ketogenic Diet in Weanling Rats. J Mol Neurosci 60, 1–9 (2016). https://doi.org/10.1007/s12031-016-0753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0753-4

Keywords

Navigation