Skip to main content

JWH-133, a Selective Cannabinoid CB2 Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells

Abstract

Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10–40 μM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AM-630:

6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone

BrdU:

5-Bromo-2′-deoxyuridine

CB2 :

Cannabinoid type 2 receptor

JWH-133:

(6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran

LDH:

Lactate dehydrogenase

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

Z-VAD-FMK:

Benzyloxy carbonyl-Val-Ala-Asp(OMe)-fluoromethylketone

References

  1. Aymerich MS, Rojo-Bustamante E, Molina C, Celorrio M, Sánchez-Aris JA, Franco R (2015) Neuroprotective effect of JZL184 in MPP+-treated SH-SY5Y cells through CB2 receptors. Mol Neurobiol. doi:10.1007/s12035-015-9213-3

    PubMed  Google Scholar 

  2. den Boon FS, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S, Kruse CG, Maccarrone M, Wadman WJ, Werkman TR (2012) Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci U S A 109:3534–3539

    Article  Google Scholar 

  3. Garcia MC, Cinquina V, Palomo-Garo C, Rabano A, Fernandez-Ruitz J (2015) Identification of CB2 receptors in human nigral neurons that degenerate in Parkinson’s disease. Neurosci Lett 587:1–4

    CAS  Article  PubMed  Google Scholar 

  4. Gómez-Gálvez Y, Palomo-Garo C, Fernández-Ruiz J, García C (2016) Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 64:200–208

    Article  Google Scholar 

  5. Huffman JW, Liddle J, Yu S, Aung MM, Abood ME, Wiley JL, Martin BR (1999) 3-(1′,1′-dimethylbutyl)-1-deoxy-Δ8-THC and related compounds: synthesis of selective ligands for the CB2 receptor. Bioorg Med Chem Lett 7:2905–2914

    CAS  Article  Google Scholar 

  6. Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ (2004) Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198:315–328

    Article  PubMed  Google Scholar 

  7. Koller VJ, Auwärter V, Grummt T, Moosmann B, Mišík M, Knasmüller S (2014) Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8. Toxicol Appl Pharmacol 277:164–171

    CAS  Article  PubMed  Google Scholar 

  8. Koller VJ, Ferk F, Al-Serori H, Mišík M, Nersesyan A, Auwärter V, Grummt T, Knasmüller S (2015) Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids. Food Chem Toxicol 80:130–136

    CAS  Article  PubMed  Google Scholar 

  9. Koller VJ, Zlabinger GJ, Auwärter V, Fuchs S, Knasmueller S (2013) Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB1. Arch Toxicol 87:1287–1297

    CAS  Article  PubMed  Google Scholar 

  10. Lanciego JL, Barroso-Chinea P, Rico AJ, Conte-Perales L, Callen L, Roda E, Gómez-Bautista V, Lopez IP, Lluis C, Labandeira-Garcia JL, Franco R (2011) Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J Psychopharmacol 25:97–104

    CAS  Article  PubMed  Google Scholar 

  11. Liu QR, Pan CH, Hishimoto A, Li CY, Xi ZX, Llorente-Berzal A, Viveros MP, Ishiguro H, Arinami T, Onaivi ES, Uhl GR (2009) Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav 8:519–530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Onaivi ES, Ishiguro H, Gu S, Liu QR (2012) CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J Psychopharmacol 26:92–103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Pacher P, Kunos G (2013) Modulating the endocannabinoid system in human health and disease—successes and failures. FEBS J 280:1918–1943

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Påhlman S, Mamaeva S, Meyerson G, Mattsson ME, Bjelfman C, Ortoft E, Hammerling U (1990) Human neuroblastoma cells in culture: a model for neuronal cell differentiation and function. Acta Physiol Scand Suppl 592:25–37

    PubMed  Google Scholar 

  15. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology, LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Schmöle AC, Lundt R, Ternes S, Albayram Ö, Ulas T, Schultze JL, Bano D, Nicotera P, Alferink J, Zimmer A (2015) Cannabinoid receptor 2 deficiency results in reduced neuroinflammation in an Alzheimer’s disease mouse model. Neurobiol Aging 36:710–719

    Article  PubMed  Google Scholar 

  17. Sierra S, Luquin N, Rico AJ, Gómez-Bautista V, Roda E, Dopeso-Reyes IG, Vázquez A, Martínez-Pinilla E, Labandeira-García JL, Franco R, Lanciego JL (2015) Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct 220:2721–2738

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Taylor L, Christou I, Kapellos TS, Buchan A, Brodermann MH, Gianella-Borradori M, Russell A, Iqbal AJ, Greaves DR (2015) Primary macrophage chemotaxis induced by cannabinoid receptor 2 agonists occurs independently of the CB2 receptor. Sci Rep 5:10682

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Tomiyama K, Funada M (2011) Cytotoxicity of synthetic cannabinoids found in "Spice" products: the role of cannabinoid receptors and the caspase cascade in the NG 108-15 cell line. Toxicol Lett 207:2–17

    Article  Google Scholar 

  20. Tomiyama K, Funada M (2014) Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol Appl Pharmacol 274:17–23

    CAS  Article  PubMed  Google Scholar 

  21. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 10:329–332

    Article  Google Scholar 

  22. Xie H, Hu L, Li G (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J 123:1086–1092

    CAS  PubMed  Google Scholar 

  23. Zhang H-Y, Gao M, Liu Q-R, Bi G-H, Yang H-J, Gardner EL, Wu J, Xi Z-X (2014) Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Nat Acad Sci U S A 111:E5007–E5015

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Supported by grants from the National Science Centre (NCN), Cracow, Poland (2014/13/8/B/NZ7/02237) and Medical University of Lodz, Lodz, Poland (503/3-011-01/503-31-002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jolanta B. Zawilska.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wojcieszak, J., Krzemień, W. & Zawilska, J.B. JWH-133, a Selective Cannabinoid CB2 Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells. J Mol Neurosci 58, 441–445 (2016). https://doi.org/10.1007/s12031-016-0726-7

Download citation

Keywords

  • Cytotoxicity
  • JWH-133
  • Cannabinoid receptors
  • SH-SY5Y cells