Skip to main content
Log in

DNA Methylation of the EphA5 Promoter Is Associated with Rat Congenital Hypothyroidism

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Thyroid hormones (THs) are essential for normal development of the mammalian central nervous system through regulation of TH-responsive genes. EphA5, an important TH-responsive gene encoding the tyrosine kinase receptor EphA5, regulates synaptogenesis initiation and synaptic remodeling during brain development. Abnormal EphA5 expression is involved in the development of congenital hypothyroidism (CH). To show the regulatory mechanism of EphA5 expression in CH rats, we analyzed the correlation between methylation of the EphA5 promoter and its expression in the hypothyroid hippocampus and hippocampal neurons. Demethylation treatment using 5′-azadeoxycytidine upregulated EphA5 expression and rescued the effects of hypermethylation, suggesting a novel regulatory mechanism of EphA5 expression in CH rats. Our results suggest a potentially new approach for the development of drugs to restore neurocognitive impairments associated with CH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaneya Y, Sohya K, Kitamura A, Kimura F, Washburn C, Zhou R, Ninan I, Tsumoto T, Ziff EB (2010) Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. PLoS One 5(8):e12486

    Article  PubMed  PubMed Central  Google Scholar 

  • Andres AC, Reid HH, Zürcher G, Blaschke RJ, Albrecht D, Ziemiecki A (1994) Expression of two novel eph-related receptor protein tyrosine kinases in mammary gland development and carcinogenesis. Oncogene 9(5):1461–1467

    CAS  PubMed  Google Scholar 

  • Baylin SB, Herman JG (2010) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16(4):168–174

    Article  Google Scholar 

  • Cooper MA, Crockett DP, Nowakowski RS, Gale NW, Zhou R (2009) Distribution of EphA5 receptor protein in the developing and adult mouse nervous system. J Comp Neurol 514(4):310–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, Gao S, Griffith EC, Brugge JS, Greenberg ME (2005) Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 46(2):205–217

    Article  CAS  PubMed  Google Scholar 

  • Dottori M, Down M, Huttmann A, Fitzpatrick DR, Boyd AW (2010) Cloning and characterization of EphA3 (Hek) gene promoter: DNA methylation regulates expression in hematopoietic tumor cells. Blood 94(7):2477–2486

    Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2008) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463

    Article  Google Scholar 

  • Ehrich M, Turner J, Gibbs P, Lipton L, Giovanneti M, Cantor C, van den Boom D (2010) Cytosine methylation profiling of cancer cell lines. Proc Natl Acad Sci U S A 105(12):4844–4849

    Article  Google Scholar 

  • Fu DY, Wang ZM, Wang BL, Chen L, Yang WT, Shen ZZ, Huang W, Shao ZM (2010) Frequent epigenetic inactivation of the receptor tyrosine kinase EphA5 by promoter methylation in human breast cancer. Hum Pathol 41(1):48–58

    Article  CAS  PubMed  Google Scholar 

  • Hermanns P, Shepherd S, Mansor M, Schulga J, Jones J, Donaldson M, Pohlenz J (2014) A new mutation in the promoter region of the PAX8 gene causes true congenital hypothyroidism with thyroid hypoplasia in a girl with Down’s syndrome. Thyroid 24(6):939–944

    Article  CAS  PubMed  Google Scholar 

  • Huot J (2004) Ephrin signaling in axon guidance. Prog Neuro-Psychopharmacol Biol Psychiatry 28(5):813–818

    Article  CAS  Google Scholar 

  • Kamitori K, Tanaka M, Okuno-Hirasawa T, Kohsaka S (2005) Receptor related to tyrosine kinase RYK regulates cell migration during cortical development. Biochem Biophys Res Commun 330(2):446–453

    Article  CAS  PubMed  Google Scholar 

  • Kinch MS, Moore MB, Harpole DH Jr (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 9(2):613–618

    CAS  PubMed  Google Scholar 

  • Liu W, Ahmad SA, Jung YD, Reinmuth N, Fan F, Bucana CD, Ellis LM (2002) Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer 94(4):934–939

    Article  CAS  PubMed  Google Scholar 

  • Macchia PE (2000) Recent advances in understanding the molecular basis of primary congenital hypothyroidism. Mol Med Today 6(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merlos-Suarez A, Battle E (2008) Eph-ephrin signaling in adult tissues and cancer. Curr Opin Cell Biol 20(2):194–200

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto M (2000) Eph receptors and ephrins. Int J Biochem Cell Biol 32(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Nestor MW, Mok LP, Tulapurkar ME, Thompson SM (2007) Plasticity of neuron-glial interactions mediated by astrocytic EphARs. J Neurosci 27(47):12817–12828

    Article  CAS  PubMed  Google Scholar 

  • Olivieri A, Fazzini C, Medda E, Collaborators (2015) Multiple factors influencing the incidence of congenital hypothyroidism detected by neonatal screening. Horm Res Paediatr 83(2):86–93

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer JH, Schwartz HL (1997) Molecular basis of thyroid hormone-dependent brain development. Endocr Rev 18(4):462–475

    CAS  PubMed  Google Scholar 

  • Pasquale EB (2005) Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6(6):462–475

    Article  CAS  PubMed  Google Scholar 

  • Petkova TD, Seigel GM, Otteson DC (2010) A role for DNA methylation in regulation of EphA5 receptor expression in the mouse retina. Vis Res 51(2):260–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Rovet JF (2002) Congenital hypothyroidism: an analysis of persisting deficits and associated factors. Child Neuropsychol 8(3):150–162

    Article  PubMed  Google Scholar 

  • Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9(2):129–140

    Article  CAS  Google Scholar 

  • Schwartz HL, Ross ME, Oppenheimer JH (1997) Lack of effects of thyroid hormone on late fetal rat brain development. Endocrinology 138(8):3119–3124

    CAS  PubMed  Google Scholar 

  • Sui L, Li BM (2010) Effects of perinatal hypothyroidism on regulation of reelin and brain-derived neurotrophic factor gene expression in rat hippocampus: role of DNA methylation and histone acetylation. Steroids 75(12):988–997

    Article  CAS  PubMed  Google Scholar 

  • Targovnik HM, Esperante SA, Rivolta CM (2010) Genetics and phenomics of hypothyroidism and goiter due to thyroglobulin mutations. Mol Cell Endocrinol 322(1-2):44–55

    Article  CAS  PubMed  Google Scholar 

  • Targovnik HM, Citterio CE, Rivolta CM (2011) Thyroglobulin gene mutations in congenital hypothyroidism. Horm Res Paediatr 75(5):311–321

    Article  CAS  PubMed  Google Scholar 

  • Walker-Daniels J, Coffman K, Azimi M, Rhim JS, Bostwick DG, Snyder P, Kerns BJ, Waters DJ, Kinch MS (1999) Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 41(4):275–280

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Kataoka H, Suzuki M, Sato N, Nakamura R, Tao H, Maruyama K, Isogaki J, Kanaoka S, Ihara M, Tanaka M, Kanamori M, Nakamura T, Shinmura K, Sugimura H (2010) Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene 24(36):5637–5647

    Article  Google Scholar 

  • Wu YJ, Xu MY, Wang L, Sun BL, Gu GX (2013) Analysis of EphA5 receptor in the developing rat brain: an in vivo study in congenital hypothyroidism model. Eur J Pediatr 172(8):1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Yue Y, Chen ZY, Gale NW, Blair-Flynn J, Hu TJ, Yue X, Cooper M, Crockett DP, Yancopoulos GD, Tessarollo L, Zhou R (2002) Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci U S A 99(16):10777–10782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Copeland TD, Kromer LF, Schulz NT (1994) Isolation and characterization of Bsk, a growth factor receptor-like tyrosine kinase associated with the limbic system. J Neurosci Res 37(1):129–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Youth Fund of the National Natural Science Foundation of China (81201975), the Youth Fund of the Natural Science Foundation of Jiangsu Province (BK2012224), and the Six Major Human Resources Project of Jiangsu Province (2014-WSW-031).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Shi.

Additional information

Youjia Wu and Honghua Song contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Song, H., Sun, B. et al. DNA Methylation of the EphA5 Promoter Is Associated with Rat Congenital Hypothyroidism. J Mol Neurosci 57, 203–210 (2015). https://doi.org/10.1007/s12031-015-0603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0603-9

Keywords

Navigation