Advertisement

Journal of Molecular Neuroscience

, Volume 57, Issue 1, pp 28–37 | Cite as

The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation

  • Huimin Kong
  • Fei Yin
  • Fang He
  • Ahmed Omran
  • Linhong Li
  • Tianhui Wu
  • Ying Wang
  • Jing PengEmail author
Article

Abstract

Astrocyte activation, associated with the release of pro-inflammatory cytokines interleukin 1-β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), is a hallmark of multiple brain diseases, including mesial temporal lobe epilepsy. In recent years, several microRNAs have emerged as important controllers of Toll-like receptor (TLR) signaling. In this study, we investigated the effect of miR-132, miR-146a, and miR-155 on myeloid-related protein-8 (MRP8) induced astrocyte-related inflammation. Using quantitative polymerase chain reaction (qPCR) and western blot, we found clear upregulation of TLR4 and downstream inflammatory cytokines, along with dysregulation of miR-132, miR-146a, and miR-155 in in vitro astrocytes after exposing them to different concentrations of MRP8. In addition, we focused on the effect of miR-132 on astrocyte-related inflammation induced by MRP8 via lentiviral infection then evaluated the expression of its possible target genes: acetylcholinesterase (AChE) and interleukin-1 receptor-associated kinase (IRAK4). Our results show that miR-132 is a negative feedback regulator of IL-1β and IL-6, but not TNF-α, by targeting IRAK4. Together, our findings demonstrate the novel role of TLR4-related microRNAs, especially miR-132, in the regulation of MRP8-induced astrocyte activation and highlight the importance of miR-132 in the modulation of innate immune response induced by endogenous ligands in neurological diseases.

Keywords

Astrocytes MicroRNA Inflammation MRP8 TLR4 

Notes

Acknowledgments

This work was kindly supported by the National Natural Science Foundation of China (Nos. 81371434, 81370771, 81301031) and Hunan Provincial Innovation Foundation for Postgraduate (No. 2501–71380100017). The authors thank Dr. Chao Chen for revising the manuscript. We also thank all members of the laboratory for insightful discussions.

Conflict of Interest

The authors declare that there are no conflicts of interest.

References

  1. Aronica E, Fluiter K, Iyer A et al (2010) Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci 31:1100–1107CrossRefPubMedGoogle Scholar
  2. Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune responses in epilepsy. Glia 60:1258–1268CrossRefPubMedGoogle Scholar
  3. Ashhab MU, Omran A, Kong H et al (2013) Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci 51:950–958CrossRefPubMedGoogle Scholar
  4. Bala S, Marcos M, Kodys K et al (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444PubMedCentralCrossRefPubMedGoogle Scholar
  5. Berson A, Knobloch M, Hanan M et al (2008) Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 131:109–119CrossRefPubMedGoogle Scholar
  6. Bicker S, Lackinger M, Weiß K, Schratt G (2014) MicroRNA-132, −134, and −138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 71:3987–4005CrossRefPubMedGoogle Scholar
  7. Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedGoogle Scholar
  9. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374CrossRefPubMedGoogle Scholar
  10. Cheng HY, Papp JW, Varlamova O et al (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829PubMedCentralCrossRefPubMedGoogle Scholar
  11. De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16CrossRefPubMedGoogle Scholar
  12. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184CrossRefPubMedGoogle Scholar
  13. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190CrossRefPubMedGoogle Scholar
  14. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524PubMedCentralCrossRefPubMedGoogle Scholar
  15. Engel S, Schluesener H, Mittelbronn M et al (2000) Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 100:313–322CrossRefPubMedGoogle Scholar
  16. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114CrossRefPubMedGoogle Scholar
  17. Floris S, van der Goes A, Killestein J et al (2004) Monocyte activation and disease activity in multiple sclerosis. A longitudinal analysis of serum MRP8/14 levels. J Neuroimmunol 148:172–177CrossRefPubMedGoogle Scholar
  18. Gan N, Yang L, Omran A et al (2014) Myoloid-related protein 8, an endogenous ligand of Toll-like receptor 4, is involved in epileptogenesis of mesial temporal lobe epilepsy via activation of the nuclear factor-kappaB pathway in astrocytes. Mol Neurobiol 49:337–351CrossRefPubMedGoogle Scholar
  19. Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: Toll-like receptors. Free Radic Biol Med 48:1121–1132PubMedCentralCrossRefPubMedGoogle Scholar
  20. Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem 264:672–686CrossRefPubMedGoogle Scholar
  21. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506PubMedCentralCrossRefPubMedGoogle Scholar
  22. Hancock ML, Preitner N, Quan J, Flanagan JG (2014) MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci 34:66–78PubMedCentralCrossRefPubMedGoogle Scholar
  23. Iyer A, Zurolo E, Prabowo A et al (2012) MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 7:e44789PubMedCentralCrossRefPubMedGoogle Scholar
  24. Jiang M, Xiang Y, Wang D et al (2012) Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 11:29–40CrossRefPubMedGoogle Scholar
  25. Karpel R, Sternfeld M, Ginzberg D, Guhl E, Graessmann A, Soreq H (1996) Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J Neurochem 66:114–123CrossRefPubMedGoogle Scholar
  26. Lagos D, Pollara G, Henderson S et al (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 12:513–519CrossRefPubMedGoogle Scholar
  27. Li G, Bauer S, Nowak M et al (2011) Cytokines and epilepsy. Seizure 20:249–256CrossRefPubMedGoogle Scholar
  28. Maharshak N, Shenhar-Tsarfaty S, Aroyo N et al (2013) MicroRNA-132 modulates cholinergic signaling and inflammation in human inflammatory bowel disease. Inflamm Bowel Dis 19:1346–1353CrossRefPubMedGoogle Scholar
  29. Nahid MA, Satoh M, Chan EK (2011a) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8:388–403PubMedCentralCrossRefPubMedGoogle Scholar
  30. Nahid MA, Satoh M, Chan EK (2011b) Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 186:1723–1734PubMedCentralCrossRefPubMedGoogle Scholar
  31. Nahid MA, Yao B, Dominguez-Gutierrez PR, Kesavalu L, Satoh M, Chan EK (2013) Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol 190:1250–1263PubMedCentralCrossRefPubMedGoogle Scholar
  32. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175CrossRefPubMedGoogle Scholar
  33. Olivieri F, Rippo MR, Prattichizzo F et al (2013) Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing 10:11PubMedCentralCrossRefPubMedGoogle Scholar
  34. Omran A, Peng J, Zhang C et al (2012) Interleukin-1beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53:1215–1224CrossRefPubMedGoogle Scholar
  35. Omran A, Ashhab MU, Gan N, Kong H, Peng J, Yin F (2013) Effects of MRP8, LPS, and lenalidomide on the expressions of TNF-alpha, brain-enriched, and inflammation-related microRNAs in the primary astrocyte culture. ScientificWorldJournal 2013:208309PubMedCentralCrossRefPubMedGoogle Scholar
  36. O'Neill LA (2009) Boosting the brain's ability to block inflammation via microRNA-132. Immunity 31:854–855CrossRefPubMedGoogle Scholar
  37. Parker NR, Correia N, Crossley B, Buckland ME, Howell VM, Wheeler HR (2013) Correlation of microRNA 132 up-regulation with an unfavorable clinical outcome in patients with primary glioblastoma multiforme treated with radiotherapy plus concomitant and adjuvant temozolomide chemotherapy. Transl Oncol 6:742–748PubMedCentralCrossRefPubMedGoogle Scholar
  38. Pedersen IM, Otero D, Kao E et al (2009) Onco-miR-155 targets SHIP1 to promote TNFalpha- dependent growth of B cell lymphomas. EMBO Mol Med 1:288–295PubMedCentralCrossRefPubMedGoogle Scholar
  39. Peng J, Omran A, Ashhab MU et al (2013) Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci 50:291–297CrossRefPubMedGoogle Scholar
  40. Quinn SR, O’Neill LA (2011) A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 23:421–425CrossRefPubMedGoogle Scholar
  41. Scott HL, Tamagnini F, Narduzzo KE et al (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948PubMedCentralCrossRefPubMedGoogle Scholar
  42. Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206CrossRefPubMedGoogle Scholar
  43. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63CrossRefPubMedGoogle Scholar
  44. Shaked I, Meerson A, Wolf Y et al (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31:965–973CrossRefPubMedGoogle Scholar
  45. Shaltiel G, Hanan M, Wolf Y et al (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218:59–72PubMedCentralCrossRefPubMedGoogle Scholar
  46. Sheng JG, Mrak RE, Griffin WS (1994) S100 beta protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J Neurosci Res 39:398–404CrossRefPubMedGoogle Scholar
  47. Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediat Inflamm 2014:901902CrossRefGoogle Scholar
  48. Sklan EH, Lowenthal A, Korner M et al (2004) Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci U S A 101:5512–5517PubMedCentralCrossRefPubMedGoogle Scholar
  49. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647PubMedCentralCrossRefPubMedGoogle Scholar
  50. Soreq H, Wolf Y (2011) NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 17:548–555CrossRefPubMedGoogle Scholar
  51. Sternfeld M, Shoham S, Klein O et al (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci U S A 97:8647–8652PubMedCentralCrossRefPubMedGoogle Scholar
  52. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486PubMedCentralCrossRefPubMedGoogle Scholar
  53. Tili E, Michaille JJ, Cimino A et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089CrossRefPubMedGoogle Scholar
  54. Tognini P, Pizzorusso T (2012) MicroRNA212/132 family: molecular transducer of neuronal function and plasticity. Int J Biochem Cell Biol 44:6–10CrossRefPubMedGoogle Scholar
  55. Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117:289–296PubMedCentralCrossRefPubMedGoogle Scholar
  56. Vainas T, Stassen FR, Bruggeman CA et al (2006) Synergistic effect of Toll-like receptor 4 and CD14 polymorphisms on the total atherosclerosis burden in patients with peripheral arterial disease. J Vasc Surg 44:326–332CrossRefPubMedGoogle Scholar
  57. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803CrossRefPubMedGoogle Scholar
  58. Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21CrossRefPubMedGoogle Scholar
  59. Viemann D, Barczyk K, Vogl T et al (2007) MRP8/MRP14 impairs endothelial integrity and induces a caspase-dependent and -independent cell death program. Blood 109:2453–2460CrossRefPubMedGoogle Scholar
  60. Virtue A, Wang H, Yang XF (2012) MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. J Hematol Oncol 5:66PubMedCentralCrossRefPubMedGoogle Scholar
  61. Vogl T, Ludwig S, Goebeler M et al (2004) MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 104:4260–4268CrossRefPubMedGoogle Scholar
  62. Vogl T, Tenbrock K, Ludwig S et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049CrossRefPubMedGoogle Scholar
  63. Xiao J, Li Y, Prandovszky E et al (2014) MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. Neuroscience 268:128–138PubMedCentralCrossRefPubMedGoogle Scholar
  64. Yonekawa K, Neidhart M, Altwegg LA et al (2011) Myeloid related proteins activate Toll-like receptor 4 in human acute coronary syndromes. Atherosclerosis 218:486–492CrossRefPubMedGoogle Scholar
  65. Ziegler G, Prinz V, Albrecht MW et al (2009) Mrp-8 and −14 mediate CNS injury in focal cerebral ischemia. Biochim Biophys Acta 1792:1198–1204CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Huimin Kong
    • 1
  • Fei Yin
    • 1
    • 2
  • Fang He
    • 1
    • 2
  • Ahmed Omran
    • 1
  • Linhong Li
    • 1
  • Tianhui Wu
    • 1
  • Ying Wang
    • 1
  • Jing Peng
    • 1
    • 2
    Email author
  1. 1.Department of PediatricsXiangya Hospital of Central South UniversityChangshaChina
  2. 2.Hunan Intellectual and Developmental Disabilities Research Center of ChildrenHunanChina

Personalised recommendations